【POJ2296】Map Labeler

题目

题目链接:http://poj.org/problem?id=2296
一个平面直角坐标系里有 \(n\) 个点,要求使这些点每一个都在一个具有一定长度的正方形的上边或下边(正方形不能重合,边界可以重叠),求这个正方形的最大边长。
注意:这道题每个点先输入的是纵坐标,其次才是横坐标。

思路

首先显然正方形边长满足单调性,所以二分最大边长 \(mid\)。
考虑如何判定一个答案是否合法,如果两个点 \(a,b\) 满足 \(|a_y-b_y|<mid\),那么这两个点放正方形就会有影响。
由于每个点放正方形的方案就只有两种,所以考虑变成 2-sat 问题。设 \(a\) 表示点 \(a\) 的正方形往上放,\(a+n\) 表示 \(a\) 的正方形往下放。
设 \(a_x\geq b_x\):

  • 如果 \(a_x=b_x\),那么两个正方形一定是一上一下,那么连边 \((a,b+n),(a+n,b),(b,a+n),(b+n,a)\)。
  • 如果 \(0<a_x-b_x<mid\),那么 \(a\) 的正方形只能往上,\(b\) 的正方形只能往下,所以连边 \((a+n,a),(b,b+n)\)。这样就保证了如果 \(a\) 往下或者 \(b\) 往上,\(a\) 和 \(a+n\) 或 \(b\) 和 \(b+n\) 一定会在一个 SCC 内。
  • 如果 \(mid\leq a_x-b_x<2mid\),那么 \(a\) 往下的时候 \(b\) 必须往下,\(b\) 往上的时候 \(a\) 必须往上。连边 \((a+n,b+n),(b,a)\)。
    然后跑 tarjan,判断是否有任意一点 \(a\) 往上和往下的两个点处于同一个 SCC 内即可。
    时间复杂度 \(O(n^3\log len)\),其中 \(len\) 是点坐标值域。三个 \(\log\) 的原因是最坏情况下会有 \(m=n^2\) 条边,而 tarjan 的复杂度是 \(O(n+m)\) 即 \(O(n + n^2)\) 的。

代码

#include <stack>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int N=210;
int T,n,tot,cnt,head[N],dfn[N],low[N],col[N];
bool vis[N];
stack<int> st;

struct node
{
	int x,y;
}a[N];

struct edge
{
	int next,to;
}e[N*N*4];

void add(int from,int to)
{
	e[++tot].to=to;
	e[tot].next=head[from];
	head[from]=tot;
}

void tarjan(int x)
{
	dfn[x]=low[x]=++tot;
	st.push(x); vis[x]=1;
	for (int i=head[x];~i;i=e[i].next)
	{
		int v=e[i].to;
		if (!dfn[v])
		{
			tarjan(v);
			low[x]=min(low[x],low[v]);
		}
		else if (vis[v])
			low[x]=min(low[x],dfn[v]);
	}
	if (dfn[x]==low[x])
	{
		int y; cnt++;
		do {
			y=st.top(); st.pop();
			vis[y]=0; col[y]=cnt;
		} while (x!=y);
	}
}

bool check()
{
	for (int i=1;i<=n;i++)
		if (col[i]==col[i+n]) return 0;
	return 1;
}

int binary()
{
	int l=1,r=20000,mid;
	while (l<=r)
	{
		mid=(l+r)>>1;
		memset(head,-1,sizeof(head));
		memset(dfn,0,sizeof(dfn));
		memset(col,0,sizeof(col));
		tot=0;
		for (int i=1;i<=n;i++)
			for (int j=1;j<=n;j++)
				if (i!=j && abs(a[i].y-a[j].y)<mid && a[i].x<=a[j].x)
				{
					if (a[i].x==a[j].x)	
						add(i,j+n),add(i+n,j),add(j,i+n),add(j+n,i);
					else if (a[j].x-a[i].x<mid)
						add(i+n,i),add(j,j+n);
					else if (a[j].x-a[i].x<mid*2)
						add(i+n,j+n),add(j,i);
				}
		tot=cnt=0;
		for (int i=1;i<=n*2;i++)
			if (!dfn[i]) tarjan(i);
		if (check()) l=mid+1;
			else r=mid-1; 
	}
	return l-1;
}

int main()
{
	scanf("%d",&T);
	while (T--)
	{
		scanf("%d",&n);
		for (int i=1;i<=n;i++)
			scanf("%d%d",&a[i].y,&a[i].x);
		printf("%d\n",binary());
	}
	return 0;
}
上一篇:P1726 上白泽慧音


下一篇:[算法笔记] 割点与割边