Spark SQL 编程初级实践

一、实验目的

(1)       通过实验掌握 Spark SQL 的基本编程方法;

(2)       熟悉 RDD 到 DataFrame 的转化方法;

(3)       熟悉利用 Spark SQL 管理来自不同数据源的数据。

二、实验平台

操作系统: Ubuntu16.04 Spark 版本:2.1.0 数据库:MySQL

三、实验内容和要求

1.Spark SQL 基本操作

将下列 json 数据复制到你的 ubuntu 系统/usr/local/spark 下,并保存命名为 employee.json。 { "id":1 ,"name":" Ella","age":36 } { "id":2,"name":"Bob","age":29 }

{ "id":3 ,"name":"Jack","age":29 }

{ "id":4 ,"name":"Jim","age":28 }

{ "id":5 ,"name":"Damon" }

{ "id":5 ,"name":"Damon" }

首先为 employee.json 创建 DataFrame,并写出 Scala 语句完成下列操作:创建 DataFrame

scala> import org.apache.spark.sql.SparkSession

scala> val spark=SparkSession.builder().getOrCreate()

scala> import spark.implicits._

scala> val df = spark.read.json("file:///usr/local/spark/employee.json")

(1)      查询 DataFrame 的所有数据

scala> df.show()

(2)      查询所有数据,并去除重复的数据

scala> df.distinct().show()

(3)      查询所有数据,打印时去除 id 字段

scala> df.drop("id").show()

(4) 筛选age>20的记录

scala> df.filter(df("age") > 30 ).show()

(5)      将数据按 name 分组

scala> df.groupBy("name").count().show()

(6)      将数据按 name 升序排列

scala> df.sort(df("name").asc).show()

(7)      取出前 3 行数据

scala> df.take(3) 或scala> df.head(3)

(8) 查询所有记录的 name 列,并为其取别名为 username

scala> df.select(df("name").as("username")).show()

(9) 查询年龄 age 的平均值

scala> df.agg("age"->"avg")

(10) 查询年龄 age 的最小值

scala> df.agg("age"->"min")

2.编程实现将 RDD 转换为 DataFrame

源文件内容如下(包含 id,name,age),

1,Ella,36

2,Bob,29

3,Jack,29

将数据复制保存到 ubuntu 系统/usr/local/spark 下,命名为 employee.txt,实现从 RDD 转换得到 DataFrame,并按 id:1,name:Ella,age:36 的格式

打印出 DataFrame 的所有数据。请写出程序代码。(任选一种方法即可)

在目录为/usr/local/spark/mycode/rddtodf下:

新建一个目录:mkdir -p src/main/scala ,

然后在目录 /usr/local/spark/mycode/rddtodf/src/main/scala 下:

新建一个文件:vim rddtodf.scala。复制下面代码;(下列两种方式任选其一)

利用反射来推断包含特定类型对象的RDD的schema,适用对已知数据结构的RDD 转换;

import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder import org.apache.spark.sql.Encoder
import spark.implicits._
object RDDtoDF {
def main(args: Array[String]) {
case class Employee(id:Long,name: String, age: Long)
val employeeDF = spark.sparkContext.textFile("file:///usr/local/spark/employee.txt").map(_.split(",")).map(attributes=>Employee(attributes(0).trim.toInt,attributes(1), attributes(2).trim.toInt)).toDF()
employeeDF.createOrReplaceTempView("employee")
val employeeRDD = spark.sql("select id,name,age from employee")
   employeeRDD.map(t=>"id:"+t(0)+","+"name:"+t(1)+","+"age:"+t(2)).show() } }

在目录/usr/local/spark/mycode/rddtodf 目录下新建文件:vim simple.sbt,将下列代码写入到该文件中:

name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.7"(此处为你的Scala版本号)
libraryDependencies += "org.apache.spark" % "spark-core" % "2.4.0"(此处为你的spark版本号)

在目录/usr/local/spark/mycode/rddtodf 下打包程序:

/usr/local/sbt/sbt package 

最后在目录/usr/local/spark/mycode/rddtodf 下提交程序

/usr/local/spark/bin/spark-submit --class "RDDtoDF”
/usr/local/spark/mycode/rddtodf/target/scala-2.12/simple-project_2.12-1.0.jar

在终端即可看到输出结果。

3. 编程实现利用 DataFrame 读写 MySQL 的数据

(1)  在 MySQL 数据库中新建数据库 sparktest,再建表 employee,包含下列两行数据;表 1 employee 表原有数据

id

name

gender

age

1

Alice

F

22

2

John

M

25

mysql> create database sparktest;
mysql> use sparktest;
mysql> create table employee (id int(4), name char(20), gender char(4), age int(4));
mysql> insert into employee values(1,'Alice','F',22);
mysql> insert into employee values(2,'John','M',25);

(2)  配置 Spark通过 JDBC 连接数据库MySQL,编程实现利用 DataFrame 插入下列数据到 MySQL,最后打印出 age 的最大值和 age 的总和。表 2 employee 表新增数据

id

name

gender

age

3

Mary

F

26

4

Tom

M

23

在目录/usr/local/spark/mycode/testmysql下新建目录: mkdir -p src/main/scala ,

然后在目录 /usr/local/spark/mycode/testmysql/src/main/scala 下新建文件:vim testmysql.scala,将下列代码复制到该文件中import java.util.Properties

import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
object TestMySQL {
def main(args: Array[String]) {
val employeeRDD = spark.sparkContext.parallelize(Array("3 Mary F 26","4 Tom M 23")).map(_.split(" "))
val schema = StructType(List(StructField("id", IntegerType, true),StructField("name", StringType, true),StructField("gender", StringType, true),StructField("age", IntegerType, true)))
val rowRDD = employeeRDD.map(p => Row(p(0).toInt,p(1).trim,
p(2).trim,p(3).toInt))
val employeeDF = spark.createDataFrame(rowRDD, schema)
     val prop = new Properties()
     prop.put("user", "root")
     prop.put("password", "hadoop")
     prop.put("driver","com.mysql.jdbc.Driver")
     employeeDF.write.mode("append").jdbc("jdbc:mysql://localhost:3306/sparktest", sparktest.employee", prop)
     val jdbcDF = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/sparktest").option("driver","com.mysql.jdbc.Driver").optio n("dbtable","employee").option("user","root").option("password", "hadoop").load()
     jdbcDF.agg("age" -> "max", "age" -> "sum")
}
}

在目录/usr/local/spark/mycode/testmysql 目录下新建文件:vim simple.sbt,复制下面代码:

name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.7" (此处为你的Scala版本)
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.4.0"(此处为你的spark版本)

在目录/usr/local/spark/mycode/testmysql下打包程序:

/usr/local/sbt/sbt package 

最后在目录/usr/local/spark/mycode/testmysql 下提交程序

/usr/local/spark/bin/spark-submit --class "TestMySQL”
/usr/local/spark/mycode/rddtodf/target/scala-2.12/simple-project_2.12-1.0.jar

在终端即可看到输出结果。

上一篇:Ibatis调用存储过程实现增删改以及分页查询


下一篇:最近这么火的iOS视频直播