pytorch实现神经网络分类功能
以下代码使用pytorch实现神经网络分类功能:
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
# make fake data
n_data = torch.ones(100, 2) # a matrix whose size=100*2,element=1
x0 = torch.normal(2 * n_data, 1) # a matrix whose size=n_data,element=random in normal distribution,means=2,standard
# deviation=1 , in fact the coordinate of all dots of class 0
y0 = torch.zeros(100)
x1 = torch.normal(-2 * n_data, 1)
y1 = torch.ones(100)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # get 2 types of coordinates together,[a,b] as unit
y = torch.cat((y0, y1), ).type(torch.LongTensor)
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer
self.out = torch.nn.Linear(n_hidden, n_output) # output layer
def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.out(x)
return x
net = Net(n_feature=2, n_hidden=10, n_output=2) # define the network
print(net) # net architecture
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)
loss_func = torch.nn.CrossEntropyLoss() # loss of classification
plt.ion() # dynamic plot
for t in range(100):
out = net(x) # input x and predict based on x
loss = loss_func(out, y)
optimizer.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if t % 2 == 0:
# plot and show learning process
plt.cla() # clear the picture to avoid overlapping
prediction = torch.max(out, 1)[1] # out size=100*2,
# max(out,1) compare elements of every row,return 100 values and 100 indexes
# [1] to get indexes
pred_y = prediction.data.numpy() # turn to numpy array
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
# s=square size of a dot
# cmap is color set
accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size) # true=1,false=0
plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
# (1.5,-4) is coordinate of text
plt.pause(0.1)
plt.ioff()
plt.show()
输出结果: