1086 Tree Traversals Again (25 分)
An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: “Push X” where X is the index of the node being pushed onto the stack; or “Pop” meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:
3 4 2 6 5 1
代码如下
#include<bits/stdc++.h>
using namespace std;
typedef struct tnode* tree;
struct tnode
{
int data;
tree left, right;
};
tree build(int* pre, int* mid, int n)
{
if(n <= 0)
return NULL;
int* p = mid;
while (true)
{
if (*p == *pre)
break;
p++;
}
int zuo = p - mid, you = n - zuo - 1;
tree L = (tree)malloc(sizeof(struct tnode));
L->data = *p;
L->left = build(pre + 1, mid, zuo);
L->right = build(pre + zuo + 1, p + 1, you);
return L;
}
int flag = 0;
void print(tree root)
{
if (root)
{
print(root->left);
print(root->right);
if (!flag)
{
printf("%d", root->data);
flag = 1;
}
else
{
printf(" %d", root->data);
}
}
}
int main()
{
int pre[35], mid[35], k1 = 0, k2 = 0;
int n;
cin >> n;
stack<int> st;
for (int i = 0; i < 2 * n; i++)
{
string order;
cin >> order;
if (order == "Push")
{
int num;
cin >> num;
pre[k1++] = num;
st.push(num);
}
else
{
mid[k2++] = st.top();
st.pop();
}
}
tree root = build(pre, mid, n);
print(root);
return 0;
}