比赛链接:21.7.14-NUAA暑期集训
比赛码:NUAAACM20210714
目录
A - 并查集板子
并查集模板,结果用二进制表示,注意要快读。
#include <cstdio>
#include <iostream>
using namespace std;
int fa[4000010], ans;
inline int read() {
char ch = getchar();
int ans = 0, f = 1;
while (ch < '0' || ch > '9') {
if (ch == '-') {
f = -1;
}
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
ans = (ans << 3) + (ans << 1) + (ch ^ 48);
ch = getchar();
}
return ans * f;
}
int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); }
void uni(int x, int y) {
int fax = find(x);
int fay = find(y);
if (fax != fay) {
fa[fax] = fay;
}
}
int main() {
int n = read(), m = read();
for (int i = 1; i <= n; ++i) {
fa[i] = i;
}
for (int i = 0; i < m; ++i) {
int act = read();
if (act == 0) {
int x = read(), y = read();
uni(x, y);
} else {
int x = read(), y = read();
ans = ((ans << 1) + (find(x) == find(y))) % 998244353;
}
}
printf("%d", ans);
return 0;
}
B - 线段树板子
\(cin,cout\)貌似会超时,要用\(scanf,printf\)或者快读,考察对\(lazy\)标记的使用。
#include <ctype.h>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define ll long long
struct node {
ll tree, left, right, lazy;
} a[4000005];
ll n, m, add, ans, x, y, act;
ll read() {
char x = getchar();
ll ans = 0LL, f = 1LL;
while (!isdigit(x)) {
if (x == '-') f = -1LL;
x = getchar();
}
while (isdigit(x)) {
ans = (ans << 3) + (ans << 1) + (x ^ 48);
x = getchar();
}
return ans * f;
}
void create(ll l, ll r, ll k) {
a[k].lazy = 0, a[k].left = l, a[k].right = r;
if (l == r) {
a[k].tree = read();
return;
}
ll mid = (l + r) / 2;
create(l, mid, k * 2);
create(mid + 1, r, k * 2 + 1);
a[k].tree = a[k * 2].tree + a[k * 2 + 1].tree;
return;
}
void load(ll k) {
ll l = k * 2, r = k * 2 + 1;
a[l].lazy += a[k].lazy;
a[r].lazy += a[k].lazy;
a[l].tree += a[k].lazy * (a[l].right - a[l].left + 1);
a[r].tree += a[k].lazy * (a[r].right - a[r].left + 1);
a[k].lazy = 0;
return;
}
void change(ll k) {
if (a[k].left >= x && a[k].right <= y) {
a[k].tree += add * (a[k].right - a[k].left + 1);
a[k].lazy += add;
return;
}
if (a[k].lazy) load(k);
ll mid = (a[k].left + a[k].right) / 2;
if (x <= mid) change(k * 2);
if (y >= mid + 1) change(k * 2 + 1);
a[k].tree = a[k * 2].tree + a[k * 2 + 1].tree;
return;
}
void inquery(ll k) {
if (a[k].left >= x && a[k].right <= y) {
ans += a[k].tree;
return;
}
if (a[k].lazy) load(k);
ll mid = (a[k].left + a[k].right) / 2;
if (x <= mid) inquery(k * 2);
if (y >= mid + 1) inquery(k * 2 + 1);
return;
}
int main() {
n = read();
m = read();
create(1, n, 1);
while (m--) {
act = read(), x = read(), y = read();
if (act == 1) {
add = read();
change(1);
}
if (act == 2) {
ans = 0LL;
inquery(1);
printf("%lld\n", ans);
}
}
return 0;
}
C - 树状数组板子
树状数组模板,注意要开\(long\) \(long\)。
#include <iostream>
#include <cstring>
using namespace std;
long long bit[1000010];
int n, q, act, l, r;
int lowbit(int x) { return x & (-x); }
void update(int x, int k) {
while (x <= n) {
bit[x] += (long long)k;
x += lowbit(x);
}
}
long long getSum(int x) {
long long ans = 0;
while (x > 0) {
ans += bit[x];
x -= lowbit(x);
}
return ans;
}
int main() {
ios::sync_with_stdio(false);
while (cin >> n >> q) {
memset(bit, 0, sizeof(bit));
for (int i = 1, x; i <= n; ++i) {
cin >> x;
update(i, x);
}
while (q--) {
cin >> act >> l >> r;
if (act == 2) {
cout << getSum(r) - getSum(l - 1) << endl;
} else {
update(l, r);
}
}
}
return 0;
}
D - 单调队列板子
用两个双向队列\(deque\)模拟单调队列来维护区间,一个单调递增,一个单调递减,使当前区间的最大最小值分别出现在两个队列的队首。
#include <cstdio>
#include <deque>
#include <iostream>
using namespace std;
int n, k, a[1000010];
int main() {
deque<int> maxn, minn;
scanf("%d%d", &n, &k);
for (int i = 0; i < n; ++i) {
scanf("%d", &a[i]);
}
for (int i = 0; i < k; ++i) { // 单调队列
while (!minn.empty() && a[i] < minn.back()) {
minn.pop_back();
}
minn.push_back(a[i]);
while (!maxn.empty() && a[i] > maxn.back()) {
maxn.pop_back();
}
maxn.push_back(a[i]);
}
// 窗口移动求最小
for (int i = k; i < n; ++i) {
cout << minn.front() << " ";
if (minn.front() == a[i - k]) {
minn.pop_front();
}
while (!minn.empty() && a[i] < minn.back()) {
minn.pop_back();
}
minn.push_back(a[i]);
}
cout << minn.front() << " ";
cout << endl;
// 窗口移动求最大
for (int i = k; i < n; ++i) {
cout << maxn.front() << " ";
if (maxn.front() == a[i - k]) {
maxn.pop_front();
}
while (!maxn.empty() && a[i] > maxn.back()) {
maxn.pop_back();
}
maxn.push_back(a[i]);
}
cout << maxn.front() << " ";
cout << endl;
return 0;
}
E - 带权并查集
正解是带权并查集,这里选用了一种开三倍并查集的思想。
开了三倍大小的标记数组来表示三个物种,\(1\)到\(n\)为\(A\)物种,\(n+1\)到\(2 \times n\)为\(B\)物种,\(2 \times n + 1\)到\(3 \times n\)为\(C\)物种。
如果\(u\)吃\(v\),则相对的\(u+n\)与\(v\)为一个物种,\(u+2\times n\)与\(v + n\)为一个物种,\(u\)与\(v + 2\times n\)为一个物种。
通过并查集关联同一物种。
#include <iostream>
#include <cstdio>
#include <ctype.h>
using namespace std;
#define MAXN 100010
#define INF 100000000
#define ll long long
ll read() { // fast read
ll ans = 0; int f = 1; char x = getchar();
while (!isdigit(x)) {
if (x == '-')
f = -1;
x = getchar();
}
while (isdigit(x)) {
ans = (ans << 3) + (ans << 1) + (x ^ 48);
x = getchar();
}
return ans * f;
}
int fa[150050], n, k, act, u, v, ans;
int find(int x) { // find father
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
int main() {
n = read(), k = read();
for (int i = 1; i <= n; ++i) {
fa[i] = i;
fa[i + n] = i + n;
fa[i + n * 2] = i + n * 2;
}
while (k--) {
act = read(), u = read(), v = read();
if (u > n || v > n) {
ans++;
continue;
}
else if (act == 1) {
if (find(u) == find(v + n) || find(v) == find(u + n)) {
ans++;
}
else { // same father
fa[find(u)] = find(v);
fa[find(u + n)] = find(v + n);
fa[find(u + n * 2)] = find(v + n * 2);
}
}
else {
if (find(u) == find(v + n) || find(u) == find(v)) {
ans++;
}
else { // u -> v
fa[find(u + n)] = find(v);
fa[find(u + n * 2)] = find(v + n);
fa[find(u)] = find(v + n * 2);
}
}
}
cout << ans;
return 0;
}
正解如下:
// 带权并查集
#include <cstdio>
#include <iostream>
using namespace std;
int f[50005], d[50005], n, k, d1, x, y, ans;
int find(int x) {
if (x != f[x]) {
int xx = f[x];
f[x] = find(f[x]);
d[x] = (d[x] + d[xx]) % 3;
}
return f[x];
}
int main() {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) {
f[i] = i;
d[i] = 0;
}
for (int i = 1; i <= k; i++) {
scanf("%d%d%d", &d1, &x, &y);
if ((d1 == 2 && x == y) || (x > n || y > n)) {
ans++;
continue;
}
if (d1 == 1) {
if (find(x) == find(y)) {
if (d[x] != d[y]) ans++;
} else {
d[f[x]] = (d[y] - d[x] + 3) % 3;
f[f[x]] = f[y];
}
}
if (d1 == 2) {
if (find(x) == find(y)) {
if (d[x] != (d[y] + 1) % 3) ans++;
} else {
d[f[x]] = (d[y] - d[x] + 4) % 3;
f[f[x]] = f[y];
}
}
}
printf("%d\n", ans);
return 0;
}
F - ST表板子
ST表模板。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int num[50005], minn[50005][50], maxn[50005][50], n, q;
void stPreWork() {
for (int i = 1; i <= n; ++i) {
minn[i][0] = num[i];
maxn[i][0] = num[i];
}
for (int j = 1; (1 << j) <= n; ++j) {
for (int i = 1; i + (1 << j) - 1 <= n; ++i) {
minn[i][j] = min(minn[i][j - 1], minn[i + (1 << (j - 1))][j - 1]);
maxn[i][j] = max(maxn[i][j - 1], maxn[i + (1 << (j - 1))][j - 1]);
}
}
}
int stQuery(int l, int r) {
int k = 0;
while (l + (1 << (k + 1)) - 1 <= r) {
k++;
}
return max(maxn[l][k], maxn[r - (1 << k) + 1][k]) - min(minn[l][k], minn[r - (1 << k) + 1][k]);
}
int main() {
scanf("%d%d", &n, &q);
for (int i = 1; i <= n; ++i) {
scanf("%d", &num[i]);
}
stPreWork();
for (int i = 1, l, r; i <= q; ++i) {
scanf("%d%d", &l, &r);
printf("%d\n", stQuery(l, r));
}
return 0;
}
G - 要求用并查集做
通过并查集来建立信息传递关系。
#include <iostream>
using namespace std;
int n, fa[200010], ans = 0x3f3f3f3f, cnt, x;
int get(int x) {
cnt++;
return fa[x] == x ? x : get(fa[x]);
}
int main() {
ios::sync_with_stdio(false);
cin >> n;
for (int i = 1; i <= n; ++i) {
fa[i] = i;
}
for (int i = 1; i <= n; ++i) {
cnt = 0;
cin >> x;
if (get(x) == i) {
ans = min(ans, cnt);
} else {
fa[i] = x;
}
}
cout << ans;
return 0;
}
H - 欧拉筛
由于任意一个数\(n\)可以表示为\(n=p^{a_1}_1 + {p}^{a_2}_2+...\),\(p_1,p_2...\)为质数。
所以\(n=p_i^{a_i} \times x\),由题意知\(a_i\)只能为\(1\)或\(2\),否则无法拆分出符合条件的情况。
当\(a_i\)为\(1\)时,一个素数有两种拆分方式,所以贡献为\(2\);当\(a_i\)为\(2\)时,只有将一个\(p_i\)分配到\(x\)里去,且\(x\)本身不可整除\(p_i\)时,才能满足条件,因此贡献为\(1\)。
可得到递推式:\(\left\{
\begin{matrix}
&f(n)=2\times f(x),&a_i=1 \\
&f(n)=f(x),&a_i=2 \\
&f(n)=0,&an=3
\end{matrix}
\right.\)。
再用前缀和记录结果。每次查询为\(O(1)\)。
#include <cstdio>
#include <iostream>
using namespace std;
#define N 20000010
bool vis[N];
int f[N], prime[N], T, n;
long long sum[N];
void init() {
int cnt = 0;
f[1] = 1;
for (int i = 2; i <= N; ++i) {
if (!vis[i]) {
prime[++cnt] = i;
f[i] = 2;
}
for (int j = 1; j <= cnt && (prime[j] * i) < N; ++j) {
int num = i * prime[j];
vis[num] = true;
if (i % prime[j]) {
f[num] = 2 * f[i];
} else if (i % (prime[j] * prime[j]) == 0) {
f[num] = 0;
} else {
f[num] = f[i / prime[j]];
break;
}
}
}
for (int i = 1; i <= N; ++i) {
sum[i] = sum[i - 1] + f[i];
}
}
int main() {
init();
scanf("%d", &T);
while (T--) {
scanf("%d", &n);
printf("%lld\n", sum[n]);
}
return 0;
}