n个点m条无向边的图,对于q个询问,每次查询点对间最小瓶颈路 >=f 的点对有多少。
最小瓶颈路显然在kruskal求得的MST上。而输入保证所有边权唯一,也就是说f[i][j]肯定唯一了。
拿到这题第一反映是用次小生成树的prim算法在求MST的同时求出每对点对的瓶颈路。几乎就是一个模板题,无奈却MLE。。。
于是换算法,用kruskal求MST,然后对于MST,离线LCA求出所有点对的瓶颈路。同UVA 11354 Bond(MST + LCA)然后剩下的就是读入&二分查找输出了。。无奈还是MLE!!!
最后。。。反思了一下。。。在kruskal的过程,当前加入的边必定是新图中最大的边!也就是说,每次加入一条边,求出当前图中经过该边的点对数就行了。。。求一个图中经过该边的点对数,将该边割开,分别从两个端点dfs,左边能遍历到x个点,右边能遍历到y个点,那么点对数就是x*y了。
原图不连通的情况也是存在的吧,这个几乎对算法不影响,只需在进入MST的点数==n的时候终止函数就行了。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<fstream>
#include<sstream>
#include<vector>
#include<string>
#include<cstdio>
#include<bitset>
#include<queue>
#include<stack>
#include<cmath>
#include<map>
#include<set>
#define FF(i, a, b) for(int i=a; i<b; i++)
#define FD(i, a, b) for(int i=a; i>=b; i--)
#define REP(i, n) for(int i=0; i<n; i++)
#define CLR(a, b) memset(a, b, sizeof(a))
#define LL long long
#define PB push_back
#define eps 1e-10
#define debug puts("**debug**")
using namespace std; const int maxn = 10010;
const int maxm = 555555;
const int INF = 1e9;
int n, m, dfs_clock, q, f, cnt, fa[maxn];
LL sum[maxn*2];
bool seen[maxn];
vector<int> edge; struct E
{
int u, v, w;
E(){}
E(int u, int v, int w) : u(u), v(v), w(w){}
bool operator < (const E& rhs) const
{
return w < rhs.w;
}
}e[maxm]; //kruskal的边 vector<int> G[maxn]; //dfs用
inline void add(int a, int b)
{
G[a].PB(b);
G[b].PB(a);
} int findset(int x) { return x == fa[x] ? x : fa[x] = findset(fa[x]); } void dfs(int u, int fa)
{
dfs_clock++;
REP(i, G[u].size())
{
int v = G[u][i];
if(v != fa) dfs(v, u);
}
} void MST()
{
int ret = 0;
cnt = 1;
sum[0] = 0;
CLR(seen, 0);
sort(e, e+m); REP(i, m)
{
int x = findset(e[i].u), y = findset(e[i].v);
if(x != y)
{
//统计进入森林的点数
if(!seen[e[i].u]) ret++;
if(!seen[e[i].v]) ret++;
seen[e[i].u] = 1;
seen[e[i].v] = 1; fa[x] = y;
add(e[i].u, e[i].v); //将边切割双向统计两边点数
dfs_clock = 0;
dfs(e[i].u, e[i].v);
int a = dfs_clock; dfs_clock = 0;
dfs(e[i].v, e[i].u);
int b = dfs_clock; //edge保存所有MST中边 sum[i]为前i条边和
edge.PB(e[i].w);
sum[cnt] = sum[cnt-1] + a*b;
cnt++;
}
if(ret == n) return ; //终止MST
}
return ;
} void solve()
{
scanf("%d", &q);
while(q--)
{
scanf("%d", &f);
int t = lower_bound(edge.begin(), edge.end(), f) - edge.begin();
//找到f的lower_bound 答案便是总和减去小于f的点对和 注意乘以2
printf("%lld\n", (sum[cnt-1]-sum[t])*2);
}
} int main()
{
while(~scanf("%d%d", &n, &m))
{
REP(i, n) G[i].clear(), fa[i] = i;
edge.clear();
REP(i, m)
scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w); MST(); solve(); }
return 0;
}