简介
在上一篇博客:数据挖掘入门系列教程(十一点五)之CNN网络介绍中,介绍了CNN的工作原理和工作流程,在这一篇博客,将具体的使用代码来说明如何使用keras构建一个CNN网络来对CIFAR-10数据集进行训练。
如果对keras不是很熟悉的话,可以去看一看官方文档。或者看一看我前面的博客:数据挖掘入门系列教程(十一)之keras入门使用以及构建DNN网络识别MNIST,在数据挖掘入门系列教程(十一)这篇博客中使用了keras构建一个DNN网络,并对keras的做了一个入门使用介绍。
CIFAR-10数据集
CIFAR-10数据集是图像的集合,通常用于训练机器学习和计算机视觉算法。它是机器学习研究中使用比较广的数据集之一。CIFAR-10数据集包含10 种不同类别的共6w张32x32彩色图像。10个不同的类别分别代表飞机,汽车,鸟类,猫,鹿,狗,青蛙,马,轮船 和卡车。每个类别有6,000张图像
在keras恰好提供了这些数据集。加载数据集的代码如下所示:
from keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print(x_train.shape, 'x_train samples')
print(x_test.shape, 'x_test samples')
print(y_train.shape, 'y_trian samples')
print(y_test.shape, 'Y_test samples')
输出结果如下:
训练集有5w张图片,测试集有1w张图片。在\(x\)数据集中,图片是\((32,32,3)\),代表图片的大小是\(32 \times 32\),为3通道(R,G,B)的图片。
展示图片内容
我们可以稍微的展示一下图片的内容,python代码如下所示:
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(12,10))
x, y = 8, 6
for i in range(x*y):
plt.subplot(y, x, i+1)
plt.imshow(x_train[i],interpolation='nearest')
plt.show()
下面就是数据集中的部分图片:
数据集变换
同样,我们需要将类标签进行one-hot编码:
import keras
# 将类向量转换为二进制类矩阵。
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
实际上这一步还有很多牛逼(骚)操作,比如说对数据集进行增强,变换等等,这样都可以在一定程度上提高模型的鲁棒性,防止过拟合。这里我们就怎么简单怎么来,就只对数据集标签进行one-hot编码就行了。
构建CNN网络
构建的网络模型代码如下所示:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten,Conv2D, MaxPooling2D
# 构建CNN网络
model = Sequential()
# 添加卷积层
model.add(Conv2D(32, (3, 3), padding='same',input_shape=x_train.shape[1:]))
# 添加激活层
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
# 添加最大池化层
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 将上一层输出的数据变成一维
model.add(Flatten())
# 添加全连接层
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation('softmax'))
# 网络模型的介绍
print(model.summary())
这里解释一下代码:
Conv2D
Conv2D代表2D的卷积层,可能这里会有人问,我的图片不是3通道(RGB)的吗?为什么使用的是Conv2D而不是Conv3D。首先先说明,在Conv2D中的这个“2”代表的是卷积层可以在两个维度(也就是width,length)进行移动。那么同理Conv3D中的“3”代表这个卷积层可以在3个维度进行移动(比如说视频中的width ,length,time)。那么针对RGB这种3通道(channels),卷积过程中输入有多少个通道,则滤波器(卷积核)就有多少个通道。
简单点来说就是:
输入
单色图片的input,是2D, \(w \times h\)
彩色图片的input,是3D,\(w \times h \times channels\)
卷积核filter
单色图片的filter,是2D, \(w \times h\)
彩色图片的filter,是3D, \(w \times h \times channels\)
值得注意的是,卷积之后的结果是二维的。(因为会将3维卷积得到的结果进行相加)
接着继续解释Conv2D
的参数:
Conv2D(32, (3, 3), padding='same',input_shape=x_train.shape[1:])
-
32
表示的是输出空间的维度(也就是filter滤波器的输出数量) -
(3,3)
代表的是卷积核的大小 -
strides
(这里没有用到):这个代表是滑动的步长。 -
input_shape
:输入的维度,这里是(28,28,3)
padding
在上一篇博客介绍过,在keras中有两个取值:"valid"
或 "same"
(大小写敏感)。
- valid padding:不进行任何处理,只使用原始图像,不允许卷积核超出原始图像边界
- same padding:进行填充,允许卷积核超出原始图像边界,并使得卷积后结果的大小与原来的一致
Flatten
Flatten这一层就是为了将多维数据变成一维数据:
构建网络
from keras.optimizers import RMSprop
# 利用 RMSprop 来训练模型。
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy']
)
其他的参数在上两篇博客中已经讲了,就不再赘述。
进行训练评估
这里大家可以根据自己的电脑配置适当调整一下batch_size的大小。
history = model.fit(x_train, y_train,
batch_size=32,
epochs=64,
verbose=1,
validation_data=(x_test, y_test)
)
在i5-10代u,mx250的情况下,训练一轮大概需要27s左右。
训练完成之后,进行评估:
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
结果如下所示:
这个结果可以说的上是一言难尽,