首先将边进行去重,那么有$n\geq\sqrt{m}$。
然后二分答案,转化为判定是否存在两个点它们的出边集合的并集为全集。
那么这两个点必然满足$deg_x+deg_y\geq n$。
不妨设$deg_x\geq deg_y$,那么有$deg_x\times 2\geq n$。
考虑枚举$x$,最多只会有$O(\frac{m}{n})$个$x$。
再枚举$y$,有两种判定算法:
$1.$设$f[i][j]$表示$i$是否没有指向$j$,那么只要存在$f[x][j]\ and\ f[y][j]=true$即不可行。
可以压位计算,时间复杂度$O(\frac{nm}{32})$。
$2.$枚举$y$的所有出边,通过时间戳判定是否出现在$x$中。
时间复杂度$O(\frac{m^2}{n})$。
设$S$为阈值,当$n\leq S$时用算法1,否则用算法2,则有$\frac{Sm}{32}\leq\frac{m^2}{S}$。
当$S$取$\sqrt{32m}$时,取得最优复杂度$O(m\sqrt{\frac{m}{32}})$。
总时间复杂度$O(m\log m\sqrt{\frac{m}{32}})$。
#include<cstdio>
#include<algorithm>
const int N=10005,M=100010;
int n,m,U,i,j,k,a[M],st[N],en[N],d[N],v[N],t,l,r,mid,ans;
unsigned int f[2048][64];
struct E{int x,y,z;}e[M];
inline bool cmp(const E&a,const E&b){
if(a.x!=b.x)return a.x<b.x;
if(a.y!=b.y)return a.y<b.y;
return a.z<b.z;
}
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
bool check(int mid){
if(n>2048){
for(i=0;i<n;i++){
d[i]=0;
for(j=st[i];j<en[i];j++)if(e[j].z<=mid)d[i]++;
}
for(i=0;i<n;i++)v[i]=-1;
for(i=0;i<n;i++)if(d[i]*2>=n){
for(k=st[i];k<en[i];k++)if(e[k].z<=mid)v[e[k].y]=i;
for(j=0;j<n;j++)if(d[i]+d[j]>=n&&d[i]>=d[j]){
t=d[i];
for(k=st[j];k<en[j];k++)if(e[k].z<=mid&&v[e[k].y]<i)t++;
if(t==n)return 1;
}
}
}else{
for(i=0;i<n;i++){
for(j=0;j<U;j++)f[i][j]=~0U;
f[i][U]=0;
for(j=U<<5;j<n;j++)f[i][j>>5]|=1U<<(j&31);
}
for(i=0;i<n;i++){
d[i]=0;
for(j=st[i];j<en[i];j++)if(e[j].z<=mid)d[i]++,f[i][e[j].y>>5]^=1U<<(e[j].y&31);
}
for(i=0;i<n;i++)if(d[i]*2>=n){
for(j=0;j<n;j++)if(d[i]+d[j]>=n&&d[i]>=d[j]){
t=1;
for(k=0;k<=U;k++)if(f[i][k]&f[j][k]){t=0;break;}
if(t)return 1;
}
}
}
return 0;
}
int main(){
read(n),read(m);U=(n-1)>>5;
for(i=1;i<=m;i++){
read(e[i].x),read(e[i].y),read(e[i].z);
e[i].x--,e[i].y--;
}
std::sort(e+1,e+m+1,cmp);
for(i=1;i<=m;i++)if(i==1||e[i].x!=e[i-1].x||e[i].y!=e[i-1].y)e[++j]=e[i];
for(m=j,i=1;i<=m;i++)a[i]=e[i].z;
std::sort(a+1,a+m+1);
for(i=0,j=1;i<n;i++){
st[i]=j;
while(j<=m&&e[j].x==i)j++;
en[i]=j;
}
l=1,r=m;
while(l<=r)if(check(a[mid=(l+r)>>1]))r=(ans=mid)-1;else l=mid+1;
if(!ans)puts("No solution");else printf("%d",a[ans]);
return 0;
}