Scala实验4.2/4.3

.编写独立应用程序实现数据去重 对于两个输入文件 A 和 B,编写 Spark 独立应用程序,对两个文件进行合并,并剔除其 中重复的内容,得到一个新文件 C。下面是输入文件和输出文件的一个样例,供参考。 输入文件 A 的样例如下: 20170101 x 20170102 y 20170103 x 20170104 y 20170105 z 20170106 z 输入文件 B 的样例如下: 20170101 y 20170102 y 20170103 x 20170104 z 20170105 y 根据输入的文件 A 和 B 合并得到的输出文件 C 的样例如下: 20170101 x 20170101 y 20170102 y 20170103 x 20170104 y 20170104 z 20170105 y 20170105 z 20170106 z
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.HashPartitioner
object RemDup {
 def main(args: Array[String]) {
 val conf = new SparkConf().setAppName("RemDup")
 val sc = new SparkContext(conf)
 val dataFile = "file:///home/charles/data"
 val data = sc.textFile(dataFile,2)
 val res = data.filter(_.trim().length>0).map(line=>(line.trim,"")).partitionBy(new 
HashPartitioner(1)).groupByKey().sortByKey().keys
 res.saveAsTextFile("result")
 } }

 

3.编写独立应用程序实现求平均值问题 每个输入文件表示班级学生某个学科的成绩,每行内容由两个字段组成,第一个是学生 名字,第二个是学生的成绩;编写 Spark 独立应用程序求出所有学生的平均成绩,并输出到 一个新文件中。下面是输入文件和输出文件的一个样例,供参考。 Algorithm 成绩: 小明 92 小红 87 小新 82 小丽 90 Database 成绩: 小明 95 小红 81 小新 89 小丽 85 Python 成绩: 小明 82 小红 83 小新 94 小丽 91 平均成绩如下: (小红,83.67) (小新,88.33) (小明,89.67) (小丽,88.67)  
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.HashPartitioner
object AvgScore {
 def main(args: Array[String]) {
 val conf = new SparkConf().setAppName("AvgScore")
 val sc = new SparkContext(conf)
 val dataFile = "file:///home/charles/data"
 val data = sc.textFile(dataFile,3)
val res = data.filter(_.trim().length>0).map(line=>(line.split(" ")(0).trim(),line.split(" 
")(1).trim().toInt)).partitionBy(new HashPartitioner(1)).groupByKey().map(x => {
 var n = 0
 var sum = 0.0
 for(i <- x._2){
 sum = sum + i
 n = n +1
 }
 val avg = sum/n
 val format = f"$avg%1.2f".toDouble
 (x._1,format)
 })
 res.saveAsTextFile("result")
 } }

  

 

 

上一篇:centos6安装gcc,设计思想解读开源框架


下一篇:Scala中String方法