python参数估计(一个总体比例)

比例(成数)的区间估计

这里只讨论大样本情况下的总体比例的估计问题。
当样本容量足够大时,样本比例p的抽样分布可用正态分布近似。
p的数学期望等于总体的比例 π \pi π

公式:

p ± z a / 2 p ( 1 − p ) n p\pm z_{a/2}\sqrt{\frac{p(1-p)}{n}} p±za/2​np(1−p)​

例:

某城市想要估计下岗职工中女性所占的比例,随机抽取了100个下岗职工,其中65人为女性职工。试以95%的置信水平估计该城市下岗职工中女性比例的置信区间。

from scipy import stats
import numpy as np

# 已知样本量
n = 100
# 计算比例p
p = 65/100
# 显著性水平
a = 0.05

计算 z a / 2 z_{a/2} za/2​

z_a2 = stats.norm.isf(a/2)
z_a2

1.9599639845400545

left = p - z_a2 * np.sqrt(p*(1-p)/n)
right = p + z_a2 * np.sqrt(p*(1-p)/n)

print('95%置信区间为{:.2f}%,{:.2f}%'.format(left*100,right*100))

95%置信区间为55.65%,74.35%

上一篇:《算法零基础》第10讲:因子分解和枚举(部分)


下一篇:直面春招!4000多页合集的计算机、网络、算法知识总结,你还看不懂吗?