Scrapy系列教程(2)------Item(结构化数据存储结构)

Items

爬取的主要目标就是从非结构性的数据源提取结构性数据,比如网页。 Scrapy提供 Item 类来满足这种需求。

Item 对象是种简单的容器。保存了爬取到得数据。
其提供了 类似于词典(dictionary-like) 的API以及用于声明可用字段的简单语法。

声明Item

Item使用简单的class定义语法以及 Field 对象来声明。

比如:

import scrapy

class Product(scrapy.Item):
name = scrapy.Field()
price = scrapy.Field()
stock = scrapy.Field()
last_updated = scrapy.Field(serializer=str)

注解

熟悉 Django 的朋友一定会注意到Scrapy Item定义方式与 Django
Models
 非常类似, 只是没有那么多不同的字段类型(Field type),更为简单。

Item字段(Item Fields)

Field 对象指明了每一个字段的元数据(metadata)。比如以下样例中 last_updated 中指明了该字段的序列化函数。

您能够为每一个字段指明不论什么类型的元数据。 Field 对象对接受的值没有不论什么限制。也正是由于这个原因,文档也无法提供全部可用的元数据的键(key)參考列表。

Field 对象中保存的每一个键能够由多个组件使用,而且仅仅有这些组件知道这个键的存在。您能够依据自己的需求,定义使用其它的Field 键。
设置 Field 对象的主要目的就是在一个地方定义好全部的元数据。

一般来说,那些依赖某个字段的组件肯定使用了特定的键(key)。您必须查看组件相关的文档,查看其用了哪些元数据键(metadata key)。

须要注意的是。用来声明item的 Field 对象并没有被赋值为class的属性。
只是您能够通过Item.fields 属性进行訪问。

以上就是全部您须要知道的怎样声明item的内容了。

与Item配合

接下来以 下边声明 的 Product item来演示一些item的操作。您会发现API和 dict
API
 很相似。

创建item

>>> product = Product(name='Desktop PC', price=1000)
>>> print product
Product(name='Desktop PC', price=1000)

获取字段的值

>>> product['name']
Desktop PC
>>> product.get('name')
Desktop PC >>> product['price']
1000 >>> product['last_updated']
Traceback (most recent call last):
...
KeyError: 'last_updated' >>> product.get('last_updated', 'not set')
not set >>> product['lala'] # getting unknown field
Traceback (most recent call last):
...
KeyError: 'lala' >>> product.get('lala', 'unknown field')
'unknown field' >>> 'name' in product # is name field populated?
True >>> 'last_updated' in product # is last_updated populated?
False >>> 'last_updated' in product.fields # is last_updated a declared field?
True >>> 'lala' in product.fields # is lala a declared field? False

设置字段的值

>>> product['last_updated'] = 'today'
>>> product['last_updated']
today >>> product['lala'] = 'test' # setting unknown field
Traceback (most recent call last):
...
KeyError: 'Product does not support field: lala'

获取全部获取到的值

您能够使用 dict API 来获取全部的值:

>>> product.keys()
['price', 'name'] >>> product.items()
[('price', 1000), ('name', 'Desktop PC')]

其它任务

复制item:

>>> product2 = Product(product)
>>> print product2
Product(name='Desktop PC', price=1000) >>> product3 = product2.copy()
>>> print product3
Product(name='Desktop PC', price=1000)

依据item创建字典(dict):

>>> dict(product) # create a dict from all populated values
{'price': 1000, 'name': 'Desktop PC'}

依据字典(dict)创建item:

>>> Product({'name': 'Laptop PC', 'price': 1500})
Product(price=1500, name='Laptop PC') >>> Product({'name': 'Laptop PC', 'lala': 1500}) # warning: unknown field in dict
Traceback (most recent call last):
...
KeyError: 'Product does not support field: lala'

扩展Item

您能够通过继承原始的Item来扩展item(加入很多其它的字段或者改动某些字段的元数据)。

比如:

class DiscountedProduct(Product):
discount_percent = scrapy.Field(serializer=str)
discount_expiration_date = scrapy.Field()

您也能够通过使用原字段的元数据,加入新的值或改动原来的值来扩展字段的元数据:

class SpecificProduct(Product):
name = scrapy.Field(Product.fields['name'], serializer=my_serializer)

这段代码在保留全部原来的元数据值的情况下加入(或者覆盖)了 name 字段的 serializer 。

Item对象

classscrapy.item.Item([arg])

返回一个依据给定的參数可选初始化的item。

Item复制了标准的 dict API 。包含初始化函数也同样。Item唯一额外加入的属性是:

fields

一个包括了item全部声明的字段的字典。而不不过获取到的字段。该字典的key是字段(field)的名字,值是 Item声明 中使用到的 Field 对象。

字段(Field)对象

classscrapy.item.Field([arg])

Field 不过内置的 dict 类的一个别名,并没有提供额外的方法或者属性。

换句话说, Field对象完全然全就是Python字典(dict)。被用来基于类属性(class
attribute)的方法来支持 item声明

上一篇:Python 查找binlog文件


下一篇:在SQL中用正则表达式替换html标签(2)