python-提高从熊猫列中提取信息的速度

我有一个包含约200,000个数据点的数据框和一个看起来像这样的列(1个数据点的示例):

'{"id":342,"name":"Web","slug":"technology/web","position":15,"parent_id":16,"color":6526716,"urls":{"web":{"discover":"http://www.kickstarter.com/discover/categories/technology/web"}}}'

我想提取有关名称和子弹的信息.我做了以下工作:

df["cat"], df["slug"] = np.nan, np.nan

for i in range(0, len(df.category)):
    df["cat"][i] = df.category.iloc[i].split('"name":"')[1].split('"')[0]
    df["slug"][i] = df.category.iloc[i].split('"name":"')[1].split('"')[4]

效果很好,但是大约需要4个小时.有什么办法可以使速度更快?

解决方法:

与其直接操作DataFrame,不如尝试使用简单的数据类型并一次性创建一个Dataframe.除jezrael之外的另一种解决方案:

import json

cat, slug = [], []

for row in df.category:
    d = json.loads(row)
    cat.append(d['cat'])
    slug.append(d['slug'])

df = pd.DataFrame({'cat': cat, 'slug': slug})
上一篇:我们如何在Android应用程序中提供字典服务?


下一篇:Linux-通过bash将google用作字典查找,一个人怎么能抓住第一个定义?