HDU 3117 Fibonacci Numbers(斐波那契前后四位,打表+取对+矩阵高速幂)
ACM
题目地址:HDU 3117 Fibonacci Numbers
题意:
求第n个斐波那契数的前四位和后四位。
不足8位直接输出。
分析:
前四位有另外一题HDU 1568,用取对的方法来做的。
后四位能够用矩阵高速幂,MOD设成10000即可了。
代码:
/*
* Author: illuz <iilluzen[at]gmail.com>
* Blog: http://blog.csdn.net/hcbbt
* File: 3117.cpp
* Create Date: 2014-08-04 10:25:26
* Descripton:
*/ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define repf(i,a,b) for(int i=(a);i<=(b);i++) typedef long long ll; const int N = 41;
const int SIZE = 2; // max size of the matrix
const int MOD = 10000; ll n;
ll tab[N];
double ans; struct Mat{
int n;
ll v[SIZE][SIZE]; // value of matrix Mat(int _n = SIZE) {
n = _n;
memset(v, 0, sizeof(v));
} void init(ll _v) {
repf (i, 0, n - 1)
v[i][i] = _v;
} void output() {
repf (i, 0, n - 1) {
repf (j, 0, n - 1)
printf("%lld ", v[i][j]);
puts("");
}
puts("");
}
} a, b; Mat operator * (Mat a, Mat b) {
Mat c(a.n);
repf (i, 0, a.n - 1) {
repf (j, 0, a.n - 1) {
c.v[i][j] = 0;
repf (k, 0, a.n - 1) {
c.v[i][j] += (a.v[i][k] * b.v[k][j]) % MOD;
c.v[i][j] %= MOD;
}
}
}
return c;
} Mat operator ^ (Mat a, ll k) {
Mat c(a.n);
c.init(1);
while (k) {
if (k&1) c = a * c;
a = a * a;
k >>= 1;
}
return c;
} double fib(int x) {
return -0.5 * log(5.0) / log(10.0) + ( (double)n) * log((sqrt(5.0) + 1) / 2) / log(10.0);
} void table() {
// table
tab[0] = 0;
tab[1] = 1;
repf (i, 2, 40)
tab[i] = tab[i - 1] + tab[i - 2];
} void pre4(int n) {
ans = fib(n);
ans -= floor(ans);
ans = pow(10.0, ans);
while (ans < 1000)
ans *= 10;
printf("%d", (int)ans);
} void last4(int n) {
a.init(0);
a.v[0][0] = a.v[0][1] = a.v[1][0] = 1; b = a ^ (n - 1);
printf("%04lld\n", b.v[0][0]);
} int main() {
table();
while (~scanf("%lld", &n)) {
if (n < 40) {
printf("%lld\n", tab[n]);
continue;
}
pre4(n);
printf("...");
last4(n);
}
return 0;
}
版权声明:本文博主原创文章,博客,未经同意,不得转载。