synchronized VS Lock, wait-notify VS Condition

最近在看Java Threads第三版,收获颇多。全英文阅读,感觉真的是爽歪歪。推荐大家都看看。

这一篇想系统的讲一讲,线程之间通信的2种模式,wait-notify 和 Condition。

先上一个生产者和消费者的例子

package waitnotify;

import java.util.ArrayList;
import java.util.List;
import java.util.Random; public class Data { private List<Integer> data = new ArrayList<Integer>(5); private Random random = new Random(); public void put() {
synchronized (data) {
if (data.size() >= 5) {
try {
data.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
} else {
data.add(random.nextInt(100));
data.notify();
}
}
} public void get() {
synchronized (data) {
if (data.size() < 1) {
try {
data.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
} else {
data.remove(0);
data.notify();
}
}
}
}
package waitnotify;

public class Producer extends Thread{

    private Data data;

    public Producer(Data data, String name) {
this.data = data;
this.setName(name);
} @Override
public void run() {
for (int i=0; i<3; i++) {
data.put();
}
}
}
package waitnotify;

public class Consumer extends Thread {

    private Data data;

    public Consumer(Data data, String name) {
this.data = data;
this.setName(name);
} @Override
public void run() {
for (int i=0; i<3; i++) {
data.get();
}
}
}
package waitnotify;

public class Test {

    public static void main (String args[]) {
Data data = new Data();
new Producer(data, "put---1").start();
new Consumer(data, "get---1").start();
new Consumer(data, "get---2").start();
new Producer(data, "put---2").start();
}
}

这个例子简单、易懂、易读。首先基于synchronized锁定共享资源(data),然后生产者和消费者通过wait和notify相互通信,实现互斥的访问共享资源。这里的关键是互斥,只要用了synchronized,所有的线程都只能互斥的执行。

1、那我们思考一个有关数据库的问题,写操作和读操作、写操作和写操作都是需要互斥的,读操作和读操作需要互斥吗?不需要,因为两个读操作同时进行,不会产生脏数据。这种情况,synchronized就无从下手。

2、还有,当多个线程访问synchronized代码,只有一个线程在执行,其它的线程只能死等。这里也是可以增加一些灵活性的,比如说,其它的线程可以等到一定时间后,中断自己,去干别的事情。

3、notify的作用是唤醒除了自己以外的其它线程,至于是哪一个,它不管。试想一个场景,有多个生产者线程和消费者线程。如果一个生产者线程发现data被装满,自己就等待,然后唤醒一个线程,那唤醒的那个线程是生产者线程,还是消费者线程呢?如果又唤醒了一个生产者线程,它还是等待,虽然不会产生脏数据,但是浪费了性能和时间啊。此处也可以优化。

下面就一起看看,如何解决上面的问题。

先来看看Lock这个接口,定义了哪些行为

public interface Lock {

    void lock();

    void lockInterruptibly() throws InterruptedException;

    boolean tryLock();

    boolean tryLock(long time, TimeUnit unit) throws InterruptedException;

    void unlock();

    Condition newCondition();
}

其中2个抛出中断异常的方法可以解决第二个问题;newCondition方法生成多个Condition可以解决第三个问题;而另一个锁接口ReadWriteLock解决了第一个问题,实现类里面用到了共享锁。

再来一个Condition版本的生产者和消费者(主要是修改了Data类)

package condition;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; public class Data { private List<Integer> data = new ArrayList<Integer>(5); private Random random = new Random(); Lock lock = new ReentrantLock();
Condition full = lock.newCondition();
Condition empty = lock.newCondition(); public void put() {
lock.lock();
try {
if (data.size() >= 5) {
full.await();
} else {
data.add(random.nextInt(100));
empty.signal();
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
} public void get() {
lock.lock();
try {
if (data.size() < 1) {
empty.await();
} else {
data.remove(0);
full.signal();
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}

这里用一个lock生成了2个Condition,然后分别进行await和signal。假设一个生产者线程发现data装满,然后full.await,然后之前的empty.signal会唤醒一个线程,此线程必定是消费者线程。其实讲到这里,读者应该能猜到,full和empty分别维护了各自的等待队列,full的队列里全是生产者线程,empty队列里全是消费者线程。另外发现,代码似乎变复杂了,必须在finally里面释放锁。因为synchronized是JVM实现的锁语义,JVM会自动的帮你释放锁。而Lock是Java代码层面的语义,如果有异常,需要自己释放。

讲了半天,好像只是描述了一个表面现象,而没有接触到实质。没办法,源码走起。

从最重要的一个类ReentrantLock的实现看起,发现几乎所有的操作,兜兜转转都是调用了另一个核心类AbstractQueuedSynchronizer。这个类是Java并发大师的杰作,是Lock机制的灵魂所在,我至今还有些地方没能够完全领悟。哎,大师就是大师。

当然,大师也是站在巨人的肩膀上。AbstractQueuedSynchronizer的核心思想是CLH队列,说白了,就是将同一个锁上等待的所有线程看成一个个节点,每一个节点都在自旋,等待前驱节点的信号并且尝试获取锁。而且,AbstractQueuedSynchronizer将同一个Condition上等待的所有线程也封装成了节点队列。

那就先看看这个节点是个什么数据结构

static final class Node {
/** Marker to indicate a node is waiting in shared mode */
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
static final Node EXCLUSIVE = null; /** waitStatus value to indicate thread has cancelled */
static final int CANCELLED = 1;
/** waitStatus value to indicate successor's thread needs unparking */
static final int SIGNAL = -1;
/** waitStatus value to indicate thread is waiting on condition */
static final int CONDITION = -2;
/**
* waitStatus value to indicate the next acquireShared should
* unconditionally propagate
*/
static final int PROPAGATE = -3; /**
* Status field, taking on only the values:
* SIGNAL: The successor of this node is (or will soon be)
* blocked (via park), so the current node must
* unpark its successor when it releases or
* cancels. To avoid races, acquire methods must
* first indicate they need a signal,
* then retry the atomic acquire, and then,
* on failure, block.
* CANCELLED: This node is cancelled due to timeout or interrupt.
* Nodes never leave this state. In particular,
* a thread with cancelled node never again blocks.
* CONDITION: This node is currently on a condition queue.
* It will not be used as a sync queue node
* until transferred, at which time the status
* will be set to 0. (Use of this value here has
* nothing to do with the other uses of the
* field, but simplifies mechanics.)
* PROPAGATE: A releaseShared should be propagated to other
* nodes. This is set (for head node only) in
* doReleaseShared to ensure propagation
* continues, even if other operations have
* since intervened.
* 0: None of the above
*
* The values are arranged numerically to simplify use.
* Non-negative values mean that a node doesn't need to
* signal. So, most code doesn't need to check for particular
* values, just for sign.
*
* The field is initialized to 0 for normal sync nodes, and
* CONDITION for condition nodes. It is modified using CAS
* (or when possible, unconditional volatile writes).
*/
volatile int waitStatus; /**
* Link to predecessor node that current node/thread relies on
* for checking waitStatus. Assigned during enqueuing, and nulled
* out (for sake of GC) only upon dequeuing. Also, upon
* cancellation of a predecessor, we short-circuit while
* finding a non-cancelled one, which will always exist
* because the head node is never cancelled: A node becomes
* head only as a result of successful acquire. A
* cancelled thread never succeeds in acquiring, and a thread only
* cancels itself, not any other node.
*/
volatile Node prev; /**
* Link to the successor node that the current node/thread
* unparks upon release. Assigned during enqueuing, adjusted
* when bypassing cancelled predecessors, and nulled out (for
* sake of GC) when dequeued. The enq operation does not
* assign next field of a predecessor until after attachment,
* so seeing a null next field does not necessarily mean that
* node is at end of queue. However, if a next field appears
* to be null, we can scan prev's from the tail to
* double-check. The next field of cancelled nodes is set to
* point to the node itself instead of null, to make life
* easier for isOnSyncQueue.
*/
volatile Node next; /**
* The thread that enqueued this node. Initialized on
* construction and nulled out after use.
*/
volatile Thread thread; /**
* Link to next node waiting on condition, or the special
* value SHARED. Because condition queues are accessed only
* when holding in exclusive mode, we just need a simple
* linked queue to hold nodes while they are waiting on
* conditions. They are then transferred to the queue to
* re-acquire. And because conditions can only be exclusive,
* we save a field by using special value to indicate shared
* mode.
*/
Node nextWaiter; /**
* Returns true if node is waiting in shared mode.
*/
final boolean isShared() {
return nextWaiter == SHARED;
} /**
* Returns previous node, or throws NullPointerException if null.
* Use when predecessor cannot be null. The null check could
* be elided, but is present to help the VM.
*
* @return the predecessor of this node
*/
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
} Node() { // Used to establish initial head or SHARED marker
} Node(Thread thread, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
} Node(Thread thread, int waitStatus) { // Used by Condition
this.waitStatus = waitStatus;
this.thread = thread;
}
}

这个Node是AbstractQueuedSynchronizer的一个内部类,大部分的英文注释说的很明白了。Node就是对线程的包装,Node有两种模式,独占(EXCLUSIVE)和共享(SHARED),前面提到的读-读操作就是利用了共享锁。对于一个节点的等待状态,CANCELLED表示当前节点被取消,比如说线程中断导致的;SIGNAL表示后继节点可以执行;CONDITION表示此节点在等待一个Condition,在Condition等待队列里面。

再看看Condition等待队列的结构

public class ConditionObject implements Condition, java.io.Serializable {
private static final long serialVersionUID = 1173984872572414699L;
/** First node of condition queue. */
private transient Node firstWaiter;
/** Last node of condition queue. */
private transient Node lastWaiter; /**
* Creates a new {@code ConditionObject} instance.
*/
public ConditionObject() { } // Internal methods /**
* Adds a new waiter to wait queue.
* @return its new wait node
*/
private Node addConditionWaiter() {
Node t = lastWaiter;
// If lastWaiter is cancelled, clean out.
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
t = lastWaiter;
}
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
} /**
* Removes and transfers nodes until hit non-cancelled one or
* null. Split out from signal in part to encourage compilers
* to inline the case of no waiters.
* @param first (non-null) the first node on condition queue
*/
private void doSignal(Node first) {
do {
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
} /**
* Removes and transfers all nodes.
* @param first (non-null) the first node on condition queue
*/
private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null;
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
} /**
* Unlinks cancelled waiter nodes from condition queue.
* Called only while holding lock. This is called when
* cancellation occurred during condition wait, and upon
* insertion of a new waiter when lastWaiter is seen to have
* been cancelled. This method is needed to avoid garbage
* retention in the absence of signals. So even though it may
* require a full traversal, it comes into play only when
* timeouts or cancellations occur in the absence of
* signals. It traverses all nodes rather than stopping at a
* particular target to unlink all pointers to garbage nodes
* without requiring many re-traversals during cancellation
* storms.
*/
private void unlinkCancelledWaiters() {
Node t = firstWaiter;
Node trail = null;
while (t != null) {
Node next = t.nextWaiter;
if (t.waitStatus != Node.CONDITION) {
t.nextWaiter = null;
if (trail == null)
firstWaiter = next;
else
trail.nextWaiter = next;
if (next == null)
lastWaiter = trail;
}
else
trail = t;
t = next;
}
} // public methods /**
* Moves the longest-waiting thread, if one exists, from the
* wait queue for this condition to the wait queue for the
* owning lock.
*
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
} /**
* Moves all threads from the wait queue for this condition to
* the wait queue for the owning lock.
*
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
public final void signalAll() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignalAll(first);
} /**
* Implements uninterruptible condition wait.
* <ol>
* <li> Save lock state returned by {@link #getState}.
* <li> Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
* <li> Block until signalled.
* <li> Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
* </ol>
*/
public final void awaitUninterruptibly() {
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
boolean interrupted = false;
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if (Thread.interrupted())
interrupted = true;
}
if (acquireQueued(node, savedState) || interrupted)
selfInterrupt();
} /*
* For interruptible waits, we need to track whether to throw
* InterruptedException, if interrupted while blocked on
* condition, versus reinterrupt current thread, if
* interrupted while blocked waiting to re-acquire.
*/ /** Mode meaning to reinterrupt on exit from wait */
private static final int REINTERRUPT = 1;
/** Mode meaning to throw InterruptedException on exit from wait */
private static final int THROW_IE = -1; /**
* Checks for interrupt, returning THROW_IE if interrupted
* before signalled, REINTERRUPT if after signalled, or
* 0 if not interrupted.
*/
private int checkInterruptWhileWaiting(Node node) {
return Thread.interrupted() ?
(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
0;
} /**
* Throws InterruptedException, reinterrupts current thread, or
* does nothing, depending on mode.
*/
private void reportInterruptAfterWait(int interruptMode)
throws InterruptedException {
if (interruptMode == THROW_IE)
throw new InterruptedException();
else if (interruptMode == REINTERRUPT)
selfInterrupt();
} /**
* Implements interruptible condition wait.
* <ol>
* <li> If current thread is interrupted, throw InterruptedException.
* <li> Save lock state returned by {@link #getState}.
* <li> Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
* <li> Block until signalled or interrupted.
* <li> Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
* <li> If interrupted while blocked in step 4, throw InterruptedException.
* </ol>
*/
public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
} /**
* Implements timed condition wait.
* <ol>
* <li> If current thread is interrupted, throw InterruptedException.
* <li> Save lock state returned by {@link #getState}.
* <li> Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
* <li> Block until signalled, interrupted, or timed out.
* <li> Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
* <li> If interrupted while blocked in step 4, throw InterruptedException.
* </ol>
*/
public final long awaitNanos(long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return deadline - System.nanoTime();
} /**
* Implements absolute timed condition wait.
* <ol>
* <li> If current thread is interrupted, throw InterruptedException.
* <li> Save lock state returned by {@link #getState}.
* <li> Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
* <li> Block until signalled, interrupted, or timed out.
* <li> Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
* <li> If interrupted while blocked in step 4, throw InterruptedException.
* <li> If timed out while blocked in step 4, return false, else true.
* </ol>
*/
public final boolean awaitUntil(Date deadline)
throws InterruptedException {
long abstime = deadline.getTime();
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (System.currentTimeMillis() > abstime) {
timedout = transferAfterCancelledWait(node);
break;
}
LockSupport.parkUntil(this, abstime);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
} /**
* Implements timed condition wait.
* <ol>
* <li> If current thread is interrupted, throw InterruptedException.
* <li> Save lock state returned by {@link #getState}.
* <li> Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
* <li> Block until signalled, interrupted, or timed out.
* <li> Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
* <li> If interrupted while blocked in step 4, throw InterruptedException.
* <li> If timed out while blocked in step 4, return false, else true.
* </ol>
*/
public final boolean await(long time, TimeUnit unit)
throws InterruptedException {
long nanosTimeout = unit.toNanos(time);
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
timedout = transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
} // support for instrumentation /**
* Returns true if this condition was created by the given
* synchronization object.
*
* @return {@code true} if owned
*/
final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
return sync == AbstractQueuedSynchronizer.this;
} /**
* Queries whether any threads are waiting on this condition.
* Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}.
*
* @return {@code true} if there are any waiting threads
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
protected final boolean hasWaiters() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
return true;
}
return false;
} /**
* Returns an estimate of the number of threads waiting on
* this condition.
* Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}.
*
* @return the estimated number of waiting threads
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
protected final int getWaitQueueLength() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int n = 0;
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
++n;
}
return n;
} /**
* Returns a collection containing those threads that may be
* waiting on this Condition.
* Implements {@link AbstractQueuedSynchronizer#getWaitingThreads(ConditionObject)}.
*
* @return the collection of threads
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
protected final Collection<Thread> getWaitingThreads() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
ArrayList<Thread> list = new ArrayList<Thread>();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION) {
Thread t = w.thread;
if (t != null)
list.add(t);
}
}
return list;
}
}

ConditionObject

ConditionObject也是AbstractQueuedSynchronizer的一个内部类,主要是处理线程通信的一个数据结构,里面维护一个等待被唤醒的线程的节点队列。

AbstractQueuedSynchronizer的成员变量,和几个CAS操作

    /**
* Head of the wait queue, lazily initialized. Except for
* initialization, it is modified only via method setHead. Note:
* If head exists, its waitStatus is guaranteed not to be
* CANCELLED.
*/
private transient volatile Node head; /**
* Tail of the wait queue, lazily initialized. Modified only via
* method enq to add new wait node.
*/
private transient volatile Node tail; /**
* The synchronization state.
*/
private volatile int state; -----------------------------CAS操作----------------------------------------------
/**
* Setup to support compareAndSet. We need to natively implement
* this here: For the sake of permitting future enhancements, we
* cannot explicitly subclass AtomicInteger, which would be
* efficient and useful otherwise. So, as the lesser of evils, we
* natively implement using hotspot intrinsics API. And while we
* are at it, we do the same for other CASable fields (which could
* otherwise be done with atomic field updaters).
*/
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long stateOffset;
private static final long headOffset;
private static final long tailOffset;
private static final long waitStatusOffset;
private static final long nextOffset; static {
try {
stateOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("state"));
headOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("head"));
tailOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
waitStatusOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("waitStatus"));
nextOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("next")); } catch (Exception ex) { throw new Error(ex); }
} /**
* CAS head field. Used only by enq.
*/
private final boolean compareAndSetHead(Node update) {
return unsafe.compareAndSwapObject(this, headOffset, null, update);
} /**
* CAS tail field. Used only by enq.
*/
private final boolean compareAndSetTail(Node expect, Node update) {
return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
} /**
* CAS waitStatus field of a node.
*/
private static final boolean compareAndSetWaitStatus(Node node,
int expect,
int update) {
return unsafe.compareAndSwapInt(node, waitStatusOffset,
expect, update);
} /**
* CAS next field of a node.
*/
private static final boolean compareAndSetNext(Node node,
Node expect,
Node update) {
return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
}

AbstractQueuedSynchronizer通过head和tail连接一个逻辑上的队列,我称之为sync队列,与Condition队列区别开来。后面的CAS操作,以后专门写一遍文章来阐述

现在再重新审视一遍Lock版本的生产者-消费者

lock.lock()调用的是非公平锁的lock方法

        final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}

第一个进来的线程如愿的获得了锁,其它的线程调用acquire(1),这个方法在AbstractQueuedSynchronizer

    public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}

这几行代码真是短小精悍!!!tryAcquire方法本来就是留给子类实现自己的逻辑的,又回到非公平锁,然后调用

        final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
// 第一个线程已经将state改为1了
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
// 这里处理可重入,每次重入+1
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}

然后就会调用addWaiter方法,将线程封装成Node添加到sync队列

    private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
    private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}

这个enq方法是个入队列操作,似乎在死循环,其实循环两次也就返回了,请读者开动脑筋。

成功添加sync队列之后,开始执行acquireQueued方法

    final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
// 此处才是真正的死循环
for (;;) {
final Node p = node.predecessor();
// 这里要先判断node的前驱节点是否为头节点,然后再尝试获取锁
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
    // 当前节点获取锁失败后,是否要将线程park
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
// 前驱节点的等待状态为SIGNAL,可以将当前线程park
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
// 前驱节点的等待状态为CANCELLED,则遍历所有前驱,将所有CANCELLED前驱跳过
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
// 将前驱节点的等待状态设置为SIGNAL
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
    private final boolean parkAndCheckInterrupt() {
// 将线程park
LockSupport.park(this);
// 是否中断
return Thread.interrupted();
}

park方法最终会借助操作系统将当前线程阻塞,与之对应的unpark方法会唤醒线程。

以上就是lock.lock()获取锁时的大体逻辑,lock.unlock()释放锁时的逻辑不再赘述,望有心人仔细阅读。

回过头来再说说Condition队列。

full.await()是ConditionObject的方法

        public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
// 将当前阶段加入到Condition等待队列
Node node = addConditionWaiter();
// 释放锁
int savedState = fullyRelease(node);
int interruptMode = 0;
// 判断节点是否已经转移到了sync队列,也是一直循环
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
// 被唤醒之后,再度尝试获取锁
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}

addConditionWaiter方法也比较简单,这里不再分析了。

然后就到了full.signal(),signal方法做的事情不多,真正干活的是doSignal方法

        private void doSignal(Node first) {
do {
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}

signal会将Condition等待队列的头节点,通过transferForSignal转移到sync队列,让节点中的线程去竞争锁以获得执行的机会。有一点值得注意,调用signal方法之后,头节点中的线程并没有马上被唤醒,至于什么时候被唤醒,就得看sync队列里的节点的执行情况了。这和wait-notify是一样的,调用notify方法后,没有马上释放锁,只有执行完synchronized代码后,才会释放锁,让被唤醒的线程获取。

上一篇:Java学习笔记(4)——JavaSE


下一篇:IntelliJ IDEA打包WAR并部署运行(mac osx)将Web项目War包部署到Tomcat服务器基本步骤(完整版)