31.电视采集项目流程spark篇通过sparksql处理业务逻辑

新建包

31.电视采集项目流程spark篇通过sparksql处理业务逻辑

 

 

package com.it19gong.clickproject;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class AccessLogPreProcessMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
    Text text = new Text();
    @Override
protected void map(LongWritable key, Text value,Context context)
        throws IOException, InterruptedException {
       String itr[] = value.toString().split(" ");
       if (itr.length < 11)
        {
            return;
        }
        String ip = itr[0];
        String date = AnalysisNginxTool.nginxDateStmpToDate(itr[3]);
        String url = itr[6];
        String upFlow = itr[9];
        
        text.set(ip+","+date+","+url+","+upFlow);
        context.write(text, NullWritable.get());
       
}
}

 

 

package com.it19gong.clickproject;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class AnalysisNginxTool
{
    private static Logger logger = LoggerFactory.getLogger(AnalysisNginxTool.class);

    public static String nginxDateStmpToDate(String date)
    {
        String res = "";
        try
        {
            SimpleDateFormat df = new SimpleDateFormat("[dd/MM/yyyy:HH:mm:ss");
            String datetmp = date.split(" ")[0].toUpperCase();
            String mtmp = datetmp.split("/")[1];
            DateToNUM.initMap();
            datetmp = datetmp.replaceAll(mtmp, (String) DateToNUM.map.get(mtmp));
            System.out.println(datetmp);
            Date d = df.parse(datetmp);
            SimpleDateFormat sdf = new SimpleDateFormat("yyyy/MM/dd");
            res = sdf.format(d);
        }
        catch (ParseException e)
        {
            logger.error("error:" + date, e);
        }
        return res;
    }

    public static long nginxDateStmpToDateTime(String date)
    {
        long l = 0;
        try
        {
            SimpleDateFormat df = new SimpleDateFormat("[dd/MM/yyyy:HH:mm:ss");
            String datetmp = date.split(" ")[0].toUpperCase();
            String mtmp = datetmp.split("/")[1];
            datetmp = datetmp.replaceAll(mtmp, (String) DateToNUM.map.get(mtmp));

            Date d = df.parse(datetmp);
            l = d.getTime();
        }
        catch (ParseException e)
        {
            logger.error("error:" + date, e);
        }
        return l;
    }
}

 

 

package com.it19gong.clickproject;

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

/**
 * Unit test for simple App.
 */
public class AppTest 
    extends TestCase
{
    /**
     * Create the test case
     *
     * @param testName name of the test case
     */
    public AppTest( String testName )
    {
        super( testName );
    }

    /**
     * @return the suite of tests being tested
     */
    public static Test suite()
    {
        return new TestSuite( AppTest.class );
    }

    /**
     * Rigourous Test :-)
     */
    public void testApp()
    {
        assertTrue( true );
    }
}

 

 

package com.it19gong.clickproject;

import java.util.HashMap;

public class DateToNUM
{
    public static HashMap map = new HashMap();

    public static void initMap()
    {
        map.put("JAN", "01");
        map.put("FEB", "02");
        map.put("MAR", "03");
        map.put("APR", "04");
        map.put("MAY", "05");
        map.put("JUN", "06");
        map.put("JUL", "07");
        map.put("AUG", "08");
        map.put("SEPT", "09");
        map.put("OCT", "10");
        map.put("NOV", "11");
        map.put("DEC", "12");
    }
}

 

 

 

新建AccessLogDriver类

package com.it19gong.clickproject;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

public class AccessLogDriver {
    
    public static void main(String[] args) throws Exception {
        
        // 创建SparkConf、JavaSparkContext、SQLContext
                SparkConf conf = new SparkConf()
                        .setMaster("local")  
                        .setAppName("RDD2DataFrameProgrammatically");  
                JavaSparkContext sc = new JavaSparkContext(conf);
                SQLContext sqlContext = new SQLContext(sc);
            
                // 第一步,创建一个普通的RDD,但是,必须将其转换为RDD<Row>的这种格式
                JavaRDD<String> lines = sc.textFile("E:\\Mycode\\dianshixiangmu\\sparkproject\\data\\access.log");
                
                // 分析一下
                // 它报了一个,不能直接从String转换为Integer的一个类型转换的错误
                // 就说明什么,说明有个数据,给定义成了String类型,结果使用的时候,要用Integer类型来使用
                // 而且,错误报在sql相关的代码中
                // 所以,基本可以断定,就是说,在sql中,用到age<=18的语法,所以就强行就将age转换为Integer来使用
                // 但是,肯定是之前有些步骤,将age定义为了String
                // 所以就往前找,就找到了这里
                // 往Row中塞数据的时候,要注意,什么格式的数据,就用什么格式转换一下,再塞进去
                JavaRDD<Row> clickRDD = lines.map(new Function<String, Row>() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Row call(String line) throws Exception {
                        String itr[] = line.split(" ");
                           
                            String ip = itr[0];
                            String date = AnalysisNginxTool.nginxDateStmpToDate(itr[3]);
                            String url = itr[6];
                            String upFlow = itr[9];
                        
                        return RowFactory.create(
                                ip,
                                date,
                                url,
                                Integer.valueOf(upFlow)
                                );      
                    }
                    
                });
                
                // 第二步,动态构造元数据
                // 比如说,id、name等,field的名称和类型,可能都是在程序运行过程中,动态从mysql db里
                // 或者是配置文件中,加载出来的,是不固定的
                // 所以特别适合用这种编程的方式,来构造元数据
                List<StructField> structFields = new ArrayList<StructField>();
                structFields.add(DataTypes.createStructField("ip", DataTypes.StringType, true));  
                structFields.add(DataTypes.createStructField("date", DataTypes.StringType, true));  
                structFields.add(DataTypes.createStructField("url", DataTypes.StringType, true)); 
                structFields.add(DataTypes.createStructField("upflow", DataTypes.IntegerType, true));  
                StructType structType = DataTypes.createStructType(structFields);
                
                // 第三步,使用动态构造的元数据,将RDD转换为DataFrame
                DataFrame studentDF = sqlContext.createDataFrame(clickRDD, structType);
            
                // 后面,就可以使用DataFrame了
                studentDF.registerTempTable("log");  
                
                DataFrame sumFlowDF = sqlContext.sql("select ip,sum(upflow) as sum from log group by ip order by sum desc"); 
                
                List<Row> rows = sumFlowDF.javaRDD().collect();
                for(Row row : rows) {
                    System.out.println(row);  
                }
        
    }

}

 

 

运行程序

31.电视采集项目流程spark篇通过sparksql处理业务逻辑

 

 

 

 

新建DBHelper类

31.电视采集项目流程spark篇通过sparksql处理业务逻辑

 

 

package com.it19gong.clickproject;


import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

public class DBHelper {

    public static final String url ="jdbc:mysql://192.168.86.131:3306/userdb";
    public static final String name="com.mysql.jdbc.Driver";
    public static final String user="sqoop";
    public static final String password="sqoop";
    
    //获取数据库连接
    public Connection conn=null;
    
    public DBHelper(){
        try {
            Class.forName(name);
            conn = DriverManager.getConnection(url, user, password);
        } catch (Exception e) {
            // TODO: handle exception
            e.printStackTrace();
        }
    }    
    

    public void close(){
        try {
            this.conn.close();
        } catch (SQLException e) {
            // TODO: handle exception
            e.printStackTrace();
        }
    }
    
}

 

 

 

修改AccessLogDriver类

package com.it19gong.clickproject;



import java.sql.PreparedStatement;
import java.util.ArrayList;
import java.util.List;



import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;



public class AccessLogDriver {
    static DBHelper db1=null;
    public static void main(String[] args) throws Exception {
        
        // 创建SparkConf、JavaSparkContext、SQLContext
                SparkConf conf = new SparkConf()
                        .setMaster("local")  
                        .setAppName("RDD2DataFrameProgrammatically");  
                JavaSparkContext sc = new JavaSparkContext(conf);
                SQLContext sqlContext = new SQLContext(sc);
            
                // 第一步,创建一个普通的RDD,但是,必须将其转换为RDD<Row>的这种格式
                JavaRDD<String> lines = sc.textFile("E:\\Mycode\\dianshixiangmu\\sparkproject\\data\\access.log");
                
                // 分析一下
                // 它报了一个,不能直接从String转换为Integer的一个类型转换的错误
                // 就说明什么,说明有个数据,给定义成了String类型,结果使用的时候,要用Integer类型来使用
                // 而且,错误报在sql相关的代码中
                // 所以,基本可以断定,就是说,在sql中,用到age<=18的语法,所以就强行就将age转换为Integer来使用
                // 但是,肯定是之前有些步骤,将age定义为了String
                // 所以就往前找,就找到了这里
                // 往Row中塞数据的时候,要注意,什么格式的数据,就用什么格式转换一下,再塞进去
                JavaRDD<Row> clickRDD = lines.map(new Function<String, Row>() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Row call(String line) throws Exception {
                        String itr[] = line.split(" ");
                           
                            String ip = itr[0];
                            String date = AnalysisNginxTool.nginxDateStmpToDate(itr[3]);
                            String url = itr[6];
                            String upFlow = itr[9];
                        
                        return RowFactory.create(
                                ip,
                                date,
                                url,
                                Integer.valueOf(upFlow)
                                );      
                    }
                    
                });
                
                // 第二步,动态构造元数据
                // 比如说,id、name等,field的名称和类型,可能都是在程序运行过程中,动态从mysql db里
                // 或者是配置文件中,加载出来的,是不固定的
                // 所以特别适合用这种编程的方式,来构造元数据
                List<StructField> structFields = new ArrayList<StructField>();
                structFields.add(DataTypes.createStructField("ip", DataTypes.StringType, true));  
                structFields.add(DataTypes.createStructField("date", DataTypes.StringType, true));  
                structFields.add(DataTypes.createStructField("url", DataTypes.StringType, true)); 
                structFields.add(DataTypes.createStructField("upflow", DataTypes.IntegerType, true));  
                StructType structType = DataTypes.createStructType(structFields);
                
                // 第三步,使用动态构造的元数据,将RDD转换为DataFrame
                DataFrame studentDF = sqlContext.createDataFrame(clickRDD, structType);
            
                // 后面,就可以使用DataFrame了
                studentDF.registerTempTable("log");  
                
                DataFrame sumFlowDF = sqlContext.sql("select ip,sum(upflow) as sum from log group by ip order by sum desc"); 
                
                db1=new DBHelper();
                final String sql="insert into upflow(ip,sum) values(?,?) ";
                sumFlowDF.javaRDD().foreach(new VoidFunction<Row>() {
                    
                    @Override
                    public void call(Row t) throws Exception {
                        // TODO Auto-generated method stub
                        PreparedStatement pt = db1.conn.prepareStatement(sql);
                        pt.setString(1,t.getString(0));
                        pt.setString(2,String.valueOf(t.getLong(1)));
                        pt.executeUpdate();
                    }
                });;
                
        
    }

}

 

 

运行

31.电视采集项目流程spark篇通过sparksql处理业务逻辑

 

 

 

可以看到mysql数据库里面对了两条数据

31.电视采集项目流程spark篇通过sparksql处理业务逻辑

 

上一篇:SparkSql如何拉取oracle数据


下一篇:Hive环境搭建和SparkSql整合