Given a constant K and a singly linked list L, you are supposed to reverse the links of every K elements on L. For example, given L being 1→2→3→4→5→6, if K=3, then you must output 3→2→1→6→5→4; if K=4, you must output 4→3→2→1→5→6.
Input Specification:
Each input file contains one test case. For each case, the first line contains the address of the first node, a positive N (≤) which is the total number of nodes, and a positive K (≤) which is the length of the sublist to be reversed. The address of a node is a 5-digit nonnegative integer, and NULL is represented by -1.
Then N lines follow, each describes a node in the format:
Address Data Next
where Address
is the position of the node, Data
is an integer, and Next
is the position of the next node.
Output Specification:
For each case, output the resulting ordered linked list. Each node occupies a line, and is printed in the same format as in the input.
Sample Input:
00100 6 4 00000 4 99999 00100 1 12309 68237 6 -1 33218 3 00000 99999 5 68237 12309 2 33218
Sample Output:
00000 4 33218 33218 3 12309 12309 2 00100 00100 1 99999 99999 5 68237 68237 6 -1
解题思路:
这道题目,用一个vector,按照顺序把 节点依次存起来,输入是4 - > 1 - > 6 -> 3 ->5 -> 2 按照 1->2->3->4->5->6存放,再反转vector
#include<cstdio> #include<cstdlib> #include<cmath> #include<vector> #include<algorithm> using namespace std; typedef struct Node{ int data; int order; int next; }Node; Node nodes[100010]; int main(){ // freopen("C:\\Users\\zzloyxt\\Desktop\\1.txt","r",stdin); int first,n,k; scanf("%d %d %d",&first,&n,&k); for(int i=0;i<n;i++){ int data,order,next; scanf("%d %d %d",&data,&order,&next); nodes[data].data = data; nodes[data].order = order; nodes[data].next = next; } vector<Node> V; for(int i=first;i!=-1;i = nodes[i].next){ V.push_back(nodes[i]); } for(int i=0;i<=V.size()-k;i=i+k){ reverse(V.begin()+i,V.begin()+i+k); } for(int i=0;i<V.size()-1;i++){ printf("%05d %d %05d\n",V[i].data,V[i].order,V[i+1].data); } printf("%05d %d %d\n",V[V.size()-1].data, V[V.size()-1].order,-1); return 0; }
注意这里的reverse()函数,传的是iterator,reverse(V.begin(), V.begin() + k),最后一个单独输出