题目描述
思路
首先想到$dijkstra$跑完之后$build$一棵最短路径树。要找到每个节点i到根的满足要求的最短路,考虑把一些非树边加进去。
对于非树边$(u,v)$,因为节点i上方的边被占领,所以只能选择往下走,从非树边走到别的子树,设$u$属于$i$的子树,$v$不属于,那么$u,v$的$lca$经过$i$,且$i$经过$(u,v)$到根的最短路为$dist[u]+dist[v]-dist[i]+w(u,v)$,这样我们把每条非树边按照$dist[u]+dist[v]+w(u,v)$排序,并查集把$(u,v)$覆盖的边缩起来乱搞一下,从$u,v$不断往上跳即可。
code
#include<iostream> #include<vector> #include<cstdio> #include<queue> #include<cstring> #include<algorithm> #define pii pair<int,int> #define mp(x,y) make_pair(x,y) using namespace std; const int N=100010; const int M=200010; const int inf=1<<30; struct node { int from,next,to,dis; }g1[M<<1],g[N<<1]; int h1[N],cnt1; int head[N],cnt; int n,m; int f[N]; inline void addedge1(int u,int v,int dis) { g1[++cnt1].next=h1[u]; g1[cnt1].to=v; g1[cnt1].from=u; g1[cnt1].dis=dis; h1[u]=cnt1; } inline void addedge(int u,int v,int dis) { g[++cnt].next=head[u]; g[cnt].to=v; g[cnt].dis=dis; head[u]=cnt; } inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int dist[N],dep[N]; bool vis[N],on_tree[M<<1]; inline void dijkstra(int s) { priority_queue<pii,vector<pii>,greater<pii> >q; for(int i=1;i<=n;i++)vis[i]=0,dist[i]=inf; dist[s]=0;q.push(mp(0,s)); while(!q.empty()) { int u=q.top().second;q.pop(); if(vis[u])continue; vis[u]=1; for(int i=h1[u];i;i=g1[i].next) { int v=g1[i].to; if(dist[v]>dist[u]+g1[i].dis) { dist[v]=dist[u]+g1[i].dis; if(!vis[v])q.push(mp(dist[v],v)); } } } } inline void bt(int u) { dep[u]=dep[f[u]]+1; for(int i=h1[u];i;i=g1[i].next) { int v=g1[i].to; if(v==f[u])continue; if(dist[v]==dist[u]+g1[i].dis) f[v]=u,bt(v),addedge(u,v,g1[i].dis),addedge(v,u,g1[i].dis),on_tree[i]=on_tree[i^1]=1; } } struct not_tree { int u,v,w,len; }e[M]; int tot=0; int ans[N]; bool cmp(not_tree a,not_tree b) { return a.len<b.len; } struct DSU { int father[N]; inline void init(int x){for(int i=1;i<=x;i++)father[i]=i;} inline int find(int x){return x==father[x]?x:father[x]=find(father[x]);} inline void merge(int x,int y){int r1=find(x),r2=find(y);father[r1]=r2;} }dsu; inline void cover(int x,int y,int len) { x=dsu.find(x);y=dsu.find(y); while(x!=y) { if(dep[x]<dep[y])swap(x,y); dsu.merge(x,f[x]); ans[x]=len-dist[x]; x=dsu.find(f[x]); } } int main() { n=read();m=read(); for(int i=1;i<=m;i++) { int x=read(),y=read(),z=read(); addedge1(x,y,z);addedge1(y,x,z); } dijkstra(1); bt(1); for(int i=1;i<=cnt1;i+=2) { if(on_tree[i])continue; int u=g1[i].from,v=g1[i].to,d=g1[i].dis; e[++tot]=(not_tree){u,v,d,dist[u]+dist[v]+d}; } sort(e+1,e+1+tot,cmp); dsu.init(n); memset(ans,-1,sizeof(ans)); for(int i=1;i<=tot;i++) { cover(e[i].u,e[i].v,e[i].len); } for(int i=2;i<=n;i++) { if(ans[i]!=-1)printf("%d\n",ans[i]); else printf("-1\n"); } }