UVaLive 5760 Alice and Bob (博弈 + 记忆化搜索)

题意:有 n 堆石子,有两种操作,一种是从一堆中拿走一个,另一种是把两堆合并起来,Alice 先拿,谁不能拿了谁输,问谁胜。

析:某些堆石子数量为 1 是特殊,石子数量大于 1 个的都合并起来,再拿,这是最优的,因为都想另一个输,并且第二种操作是可以翻转胜负的,所以都会先采取第二个操作,但是砘数量为 1 却不是,所以要分开考虑,dp[i][j] 表示,数量为 1 的堆的个数,总的操作数为 j,先手胜还是负。

考虑边界,如果剩下的都是 1 的,那么 i % 3 != 0 先手胜,

如果没有 1了,那么那是 j % 2 != 0 先手胜,

如果 j 只剩下一个了,那么就可以合并到 1,

操作有三种,第一种,从石子为 1 个的堆中拿一个

第二种,从石子不为 1  的堆中拿一个

第三种,把两个堆石子为 1 的进行合并,并放到总操作数中。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define be begin()
#define ed end()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
//#define all 1,n,1
#define FOR(i,n,x) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.in", "r", stdin)
#define freopenw freopen("out.out", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e5 + 10;
const int maxm = 1e6 + 10;
const LL mod = 1000000007;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
}
inline int readInt(){ int x; scanf("%d", &x); return x; } int dp[55][1000 * 50+100]; bool dfs(int n, int m){
int &ans = dp[n][m];
if(ans >= 0) return ans;
if(n == 0) return ans = m&1;
if(m == 0) return ans = (n % 3 != 0);
if(m == 1) return ans = dfs(n+1, 0);
if(!dfs(n-1, m)) return ans = 1;
if(!dfs(n, m-1)) return ans = 1;
if(!dfs(n-1, m+1)) return ans = 1;
if(n > 1 & !dfs(n-2, m + 3)) return ans = 1;
return ans = 0;
} int main(){
ms(dp, -1);
int T; cin >> T;
for(int kase = 1; kase <= T; ++kase){
scanf("%d", &n);
int cnt1 = 0, sum = 0;
for(int i = 1; i <= n; ++i){
int x = readInt();
if(x == 1) ++cnt1;
else sum += x;
}
sum += max(0, n - cnt1 - 1);
printf("Case #%d: %s\n", kase, dfs(cnt1, sum) ? "Alice" : "Bob");
}
return 0;
}

  

上一篇:ionic3 Alert组件的使用方法


下一篇:Nagios安装与配置