The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
A binary search tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
Given any two nodes in a BST, you are supposed to find their LCA.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.
Output Specification:
For each given pair of U and V, print in a line LCA of U and V is A.
if the LCA is found and A
is the key. But if A
is one of U and V, print X is an ancestor of Y.
where X
is A
and Y
is the other node. If U or V is not found in the BST, print in a line ERROR: U is not found.
or ERROR: V is not found.
or ERROR: U and V are not found.
.
Sample Input:
6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99
Sample Output:
LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.
#include <stdio.h> #include <algorithm> #include <iostream> #include <map> #include <vector> #include <set> using namespace std; const int maxn=10010; int n,m,k; int inorder[maxn],preorder[maxn]; struct node{ int data; node* left; node* right; }; node* create(int prel,int prer,int inl,int inr){ if(prel>prer){ return NULL; } node* root=new node; root->data=preorder[prel]; int k; for(k=inl;k<=inr;k++){ if(inorder[k]==preorder[prel]){ break; } } int numleft=k-inl; root->left = create(prel+1,prel+numleft,inl,k-1); root->right = create(prel+numleft+1,prer,k+1,inr); return root; } bool findnode(int x){ for(int i=0;i<m;i++){ if(preorder[i]==x) return true; } return false; } node* lca(node* root,int x1,int x2){ if(root==NULL)return NULL; if(root->data==x1 || root->data==x2) return root; node* left = lca(root->left,x1,x2); node* right = lca(root->right,x1,x2); if(left && right) return root; else if(left==NULL) return right; else return left; } int main(){ scanf("%d %d",&n,&m); for(int i=0;i<m;i++){ int c1; scanf("%d",&c1); preorder[i]=c1; inorder[i]=c1; } sort(inorder,inorder+m); node *root=create(0,m-1,0,m-1); for(int i=0;i<n;i++){ int x1,x2; scanf("%d %d",&x1,&x2); if(!findnode(x1) && !findnode(x2)){ printf("ERROR: %d and %d are not found.\n",x1,x2); } else if(!findnode(x1)) printf("ERROR: %d is not found.\n",x1); else if(!findnode(x2)) printf("ERROR: %d is not found.\n",x2); else{ node* res = lca(root,x1,x2); if(res->data == x1) printf("%d is an ancestor of %d.\n",x1,x2); else if(res->data == x2) printf("%d is an ancestor of %d.\n",x2,x1); else printf("LCA of %d and %d is %d.\n",x1,x2,res->data); } } }
注意点:这题和上一道1151基本一样,感觉是中间隔一次考试就会出现类似题目,不同的就是这个是给出二叉搜索树和他的先序遍历,而二叉搜索树的中序遍历其实就是对先序遍历排序,然后题目就一样了