Given a m x n
matrix mat
and an integer threshold
. Return the maximum side-length of a square with a sum less than or equal to threshold
or return 0 if there is no such square.
Example 1:
Input: mat = [[1,1,3,2,4,3,2],[1,1,3,2,4,3,2],[1,1,3,2,4,3,2]], threshold = 4 Output: 2 Explanation: The maximum side length of square with sum less than 4 is 2 as shown.
Example 2:
Input: mat = [[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2]], threshold = 1 Output: 0
Example 3:
Input: mat = [[1,1,1,1],[1,0,0,0],[1,0,0,0],[1,0,0,0]], threshold = 6 Output: 3
Example 4:
Input: mat = [[18,70],[61,1],[25,85],[14,40],[11,96],[97,96],[63,45]], threshold = 40184 Output: 2
Constraints:
1 <= m, n <= 300
m == mat.length
n == mat[i].length
0 <= mat[i][j] <= 10000
0 <= threshold <= 10^5
给定一个矩阵,找出一个最大正方形的边长,这个正方形中元素和要小于threshold。
解法:
二维前缀和,sum[i][j]表示从[0][0]到[i][j]的矩形的元素和,有了这个sum后,就可以用 O(row * col * min(row,col)) 的时间复杂度遍历所有的正方形。
class Solution { public: int maxSideLength(vector<vector<int>>& mat, int threshold) { int row = mat.size(), col = mat[0].size(); vector<vector<int>> sum(row+1, vector<int>(col+1, 0)); for(int i=1; i<=row; i++) for(int j=1; j<=col; j++) sum[i][j] = sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+mat[i-1][j-1]; int ret = 0; for(int i=1; i<=row; i++) for(int j=1; j<=col; j++){ for(int k=1; k<=min(i, j); k++){ int temp = sum[i][j]-sum[i-k][j]-sum[i][j-k]+sum[i-k][j-k]; if(temp <= threshold) ret = max(ret, k); } } return ret; } };