嘟嘟嘟
一道比较有意思的dp。
这题关键在于状态的设计。如果像我一样令\(dp[i][j]\)表示选到第\(i\)个物品,\(\sum c\)能都等于\(j\)的话,那就是\(O(qnk)\)了,怒拿一半分……
正解应该是令\(dp[i][j]\)表示选出的物品的\(a\)小于等于\(i\),\(\sum c\)等于\(j\)时,\(b\)的最小值的最大值。
然后我们可以离散化\(a\),再dp。
但这样会MLE……
所以还是离线吧:把询问按\(m\)排序,然后把所有小于等于\(m\)的\(a\)的物品放进去dp,于是就有\(dp[i][j] = max(dp[i][j], min(dp[i - 1][j - c[k]], b[k]))\)。
然后像背包一样省去第一维,倒着枚举。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxk = 2e5 + 5;
const int maxn = 1e3 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, Q, m, K, s;
struct Node
{
int a, b, c, id;
In bool operator < (const Node& oth)const
{
return a < oth.a;
}
}t[maxn], q[maxn * maxn];
int dp[maxk];
bool ans[maxn * maxn];
int main()
{
n = read();
for(int i = 1; i <= n; ++i)
t[i].c = read(), t[i].a = read(), t[i].b = read();
Q = read();
for(int i = 1; i <= Q; ++i)
q[i].a = read(), q[i].b = read(), q[i].c = read(), q[i].id = i;
sort(t + 1, t + n + 1), sort(q + 1, q + Q + 1);
dp[0] = INF;
for(int i = 1, j = 1; i <= Q; ++i)
{
while(j <= n && t[j].a <= q[i].a)
{
for(int k = 1e5; k >= t[j].c; --k)
dp[k] = max(dp[k], min(dp[k - t[j].c], t[j].b));
++j;
}
if(dp[q[i].b] > q[i].a + q[i].c) ans[q[i].id] = 1;
}
for(int i = 1; i <= Q; ++i) puts(ans[i] ? "TAK" : "NIE");
return 0;
}