上两篇我们讲了hash和list数据类型相关的主要实现方法,同时加上前面对框架服务和string相关的功能介绍,已揭开了大部分redis的实用面纱。
现在还剩下两种数据类型: set, zset.
本篇咱们继续来看redis中的数据类型的实现: set 相关操作实现。
研究过jdk的hashmap和hashset实现的同学,肯定都是知道,set其实就是一个简化版的map,只要将map的 k->v 的形式变为 k->1 的形式就可以了。所以set只是map的一个简单包装类。
同理,对于 redis的 hash 和 set 数据类型,我们是否可以得出这么个结论呢?(如果是那样的话,我们就只需看几个set提供的特殊功能即可)
同样,我们从功能列表开始,到数据结构,再到具体实现的这么个思路,来探索redis set的实现吧。
零、redis set相关操作方法
Redis 的 Set 是 String 类型的无序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据。可根据应用场景需要选用该数据类型。(比如:好友/关注/粉丝/感兴趣的人/黑白名单)
从官方的手册中可以查到相关的使用方法。
1> SADD key member1 [member2]
功能: 向集合添加一个或多个成员
返回值: 本次添加到redis的member数量(不包含已存在的member)2> SCARD key
功能: 获取集合的成员数
返回值: set的元素数量或者03> SDIFF key1 [key2]
功能: 返回给定所有集合的差集
返回值: 差集的数组列表4> SDIFFSTORE destination key1 [key2]
功能: 返回给定所有集合的差集并存储在 destination 中
返回值: 差集元素个数5> SINTER key1 [key2]
功能: 返回给定所有集合的交集
返回值: 交集的数组列表6> SINTERSTORE destination key1 [key2]
功能: 返回给定所有集合的交集并存储在 destination 中
返回值: 交集的元素个数7> SISMEMBER key member
功能: 判断 member 元素是否是集合 key 的成员
返回值: 1:如果member是key的成员, 0:如果member不是key的成员或者key不存在8> SMEMBERS key
功能: 返回集合中的所有成员
返回值: 所有成员列表9> SMOVE source destination member
功能: 将 member 元素从 source 集合移动到 destination 集合
返回值: 1:移动操作成功, 0:移动不成功(member不是source的成员)10> SPOP key [count]
功能: 移除并返回集合中的一个随机元素(因为set是无序的)
返回值: 被移除的元素列表或者nil11> SRANDMEMBER key [count]
功能: 返回集合中一个或多个随机数
返回值: 1个元素或者count个元素数组列表或者nil12> SREM key member1 [member2]
功能: 移除集合中一个或多个成员
返回值: 实际移除的元素个数13> SUNION key1 [key2]
功能: 返回所有给定集合的并集
返回值: 并集元素数组列表14> SUNIONSTORE destination key1 [key2]
功能: 所有给定集合的并集存储在 destination 集合中
返回值: 并集元素个数15> SSCAN key cursor [MATCH pattern] [COUNT count]
功能: 迭代集合中的元素
返回值: 元素数组列表
一、set 相关数据结构
redis使用dict和intset 两种数据结构保存set数据。
// 1. inset 数据结构,在set数据量小且都是整型数据时使用 typedef struct intset { // 编码范围,由具体存储值决定 uint32_t encoding; // 数组长度 uint32_t length; // 具体存储元素的容器 int8_t contents[]; } intset; // 2. dict 相关数据结构,即是 hash 的实现相关的数据结构 /* This is our hash table structure. Every dictionary has two of this as we * implement incremental rehashing, for the old to the new table. */ typedef struct dictht { dictEntry **table; unsigned long size; unsigned long sizemask; unsigned long used; } dictht; typedef struct dict { dictType *type; void *privdata; dictht ht[2]; long rehashidx; /* rehashing not in progress if rehashidx == -1 */ unsigned long iterators; /* number of iterators currently running */ } dict; /* If safe is set to 1 this is a safe iterator, that means, you can call * dictAdd, dictFind, and other functions against the dictionary even while * iterating. Otherwise it is a non safe iterator, and only dictNext() * should be called while iterating. */ typedef struct dictIterator { dict *d; long index; int table, safe; dictEntry *entry, *nextEntry; /* unsafe iterator fingerprint for misuse detection. */ long long fingerprint; } dictIterator; typedef struct dictEntry { void *key; union { void *val; uint64_t u64; int64_t s64; double d; } v; struct dictEntry *next; } dictEntry; typedef struct dictType { unsigned int (*hashFunction)(const void *key); void *(*keyDup)(void *privdata, const void *key); void *(*valDup)(void *privdata, const void *obj); int (*keyCompare)(void *privdata, const void *key1, const void *key2); void (*keyDestructor)(void *privdata, void *key); void (*valDestructor)(void *privdata, void *obj); } dictType;
对于set相关的命令的接口定义:
{"sadd",saddCommand,-3,"wmF",0,NULL,1,1,1,0,0}, {"srem",sremCommand,-3,"wF",0,NULL,1,1,1,0,0}, {"smove",smoveCommand,4,"wF",0,NULL,1,2,1,0,0}, {"sismember",sismemberCommand,3,"rF",0,NULL,1,1,1,0,0}, {"scard",scardCommand,2,"rF",0,NULL,1,1,1,0,0}, {"spop",spopCommand,-2,"wRsF",0,NULL,1,1,1,0,0}, {"srandmember",srandmemberCommand,-2,"rR",0,NULL,1,1,1,0,0}, {"sinter",sinterCommand,-2,"rS",0,NULL,1,-1,1,0,0}, {"sinterstore",sinterstoreCommand,-3,"wm",0,NULL,1,-1,1,0,0}, {"sunion",sunionCommand,-2,"rS",0,NULL,1,-1,1,0,0}, {"sunionstore",sunionstoreCommand,-3,"wm",0,NULL,1,-1,1,0,0}, {"sdiff",sdiffCommand,-2,"rS",0,NULL,1,-1,1,0,0}, {"sdiffstore",sdiffstoreCommand,-3,"wm",0,NULL,1,-1,1,0,0}, {"smembers",sinterCommand,2,"rS",0,NULL,1,1,1,0,0}, {"sscan",sscanCommand,-3,"rR",0,NULL,1,1,1,0,0},
二、sadd 添加成员操作
一般我们都会以添加数据开始。从而理解数据结构的应用。
// 用法: SADD key member1 [member2] // t_set.c, 添加member void saddCommand(client *c) { robj *set; int j, added = 0; // 先从当前db中查找set实例 set = lookupKeyWrite(c->db,c->argv[1]); if (set == NULL) { // 1. 新建set实例并添加到当前db中 set = setTypeCreate(c->argv[2]->ptr); dbAdd(c->db,c->argv[1],set); } else { if (set->type != OBJ_SET) { addReply(c,shared.wrongtypeerr); return; } } // 对于n个member,一个个地添加即可 for (j = 2; j < c->argc; j++) { // 2. 只有添加成功, added 才会加1 if (setTypeAdd(set,c->argv[j]->ptr)) added++; } // 命令传播 if (added) { signalModifiedKey(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_SET,"sadd",c->argv[1],c->db->id); } server.dirty += added; // 响应添加成功的数量 addReplyLongLong(c,added); } // 1. 创建新的set集合实例(需根据首次的参数类型判定) // t_set.c, 创建set实例 /* Factory method to return a set that *can* hold "value". When the object has * an integer-encodable value, an intset will be returned. Otherwise a regular * hash table. */ robj *setTypeCreate(sds value) { // 如果传入的value是整型,则创建 intset 类型的set // 否则使用dict类型的set // 一般地,第一个数据为整型,后续数据也应该为整型,所以这个数据结构相对稳定 // 而hash的容器创建时,只使用了一 ziplist 创建,这是不一样的实现 if (isSdsRepresentableAsLongLong(value,NULL) == C_OK) return createIntsetObject(); return createSetObject(); } // 1.1. 创建 intset 型的set // object.c robj *createIntsetObject(void) { intset *is = intsetNew(); robj *o = createObject(OBJ_SET,is); o->encoding = OBJ_ENCODING_INTSET; return o; } // intset.c, new一个空的intset对象 /* Create an empty intset. */ intset *intsetNew(void) { intset *is = zmalloc(sizeof(intset)); is->encoding = intrev32ifbe(INTSET_ENC_INT16); is->length = 0; return is; } // 1.2. 创建dict 型的set robj *createSetObject(void) { dict *d = dictCreate(&setDictType,NULL); robj *o = createObject(OBJ_SET,d); o->encoding = OBJ_ENCODING_HT; return o; } // dict.c /* Create a new hash table */ dict *dictCreate(dictType *type, void *privDataPtr) { dict *d = zmalloc(sizeof(*d)); _dictInit(d,type,privDataPtr); return d; } /* Initialize the hash table */ int _dictInit(dict *d, dictType *type, void *privDataPtr) { _dictReset(&d->ht[0]); _dictReset(&d->ht[1]); d->type = type; d->privdata = privDataPtr; d->rehashidx = -1; d->iterators = 0; return DICT_OK; } // 2. 添加member到set集合中 // t_set.c, 添加元素 /* Add the specified value into a set. * * If the value was already member of the set, nothing is done and 0 is * returned, otherwise the new element is added and 1 is returned. */ int setTypeAdd(robj *subject, sds value) { long long llval; // 2.1. HT编码和INTSET编码分别处理就好 if (subject->encoding == OBJ_ENCODING_HT) { dict *ht = subject->ptr; // 以 value 为 key, 添加实例到ht中 // 实现过程也很简单,大概就是如果存在则返回NULL(即无需添加),辅助rehash,分配内存创建dictEntry实例,稍后简单看看 dictEntry *de = dictAddRaw(ht,value); if (de) { // 重新设置key为 sdsdup(value), value为NULL dictSetKey(ht,de,sdsdup(value)); dictSetVal(ht,de,NULL); return 1; } } // 2.2. intset 编码的member添加 else if (subject->encoding == OBJ_ENCODING_INTSET) { // 尝试解析value为 long 型,值写入 llval 中 if (isSdsRepresentableAsLongLong(value,&llval) == C_OK) { uint8_t success = 0; // 情况1. 可添加到intset中 subject->ptr = intsetAdd(subject->ptr,llval,&success); if (success) { /* Convert to regular set when the intset contains * too many entries. */ // 默认: 512, intset大于之后,则转换为ht hash表模式存储 if (intsetLen(subject->ptr) > server.set_max_intset_entries) // 2.3. 转换intset编码为 ht 编码 setTypeConvert(subject,OBJ_ENCODING_HT); return 1; } } else { // 情况2. member 是字符串型,先将set容器转换为 ht 编码,再重新执行dict的添加模式 /* Failed to get integer from object, convert to regular set. */ setTypeConvert(subject,OBJ_ENCODING_HT); /* The set *was* an intset and this value is not integer * encodable, so dictAdd should always work. */ serverAssert(dictAdd(subject->ptr,sdsdup(value),NULL) == DICT_OK); return 1; } } else { serverPanic("Unknown set encoding"); } return 0; } // 2.1. 添加member到dict中(略解, 在hash数据结构解析中已介绍) // dict.c, 添加某key到 d 字典中 /* Low level add. This function adds the entry but instead of setting * a value returns the dictEntry structure to the user, that will make * sure to fill the value field as he wishes. * * This function is also directly exposed to the user API to be called * mainly in order to store non-pointers inside the hash value, example: * * entry = dictAddRaw(dict,mykey); * if (entry != NULL) dictSetSignedIntegerVal(entry,1000); * * Return values: * * If key already exists NULL is returned. * If key was added, the hash entry is returned to be manipulated by the caller. */ dictEntry *dictAddRaw(dict *d, void *key) { int index; dictEntry *entry; dictht *ht; if (dictIsRehashing(d)) _dictRehashStep(d); /* Get the index of the new element, or -1 if * the element already exists. */ // 获取需要添加的key的存放位置下标(slot), 如果该key已存在, 则返回-1(无可用slot) if ((index = _dictKeyIndex(d, key)) == -1) return NULL; /* Allocate the memory and store the new entry. * Insert the element in top, with the assumption that in a database * system it is more likely that recently added entries are accessed * more frequently. */ ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0]; entry = zmalloc(sizeof(*entry)); entry->next = ht->table[index]; ht->table[index] = entry; ht->used++; /* Set the hash entry fields. */ dictSetKey(d, entry, key); return entry; } // 2.2. 添加整型数据到 intset中 // intset.c, 添加value /* Insert an integer in the intset */ intset *intsetAdd(intset *is, int64_t value, uint8_t *success) { // 获取value的所属范围 uint8_t valenc = _intsetValueEncoding(value); uint32_t pos; if (success) *success = 1; /* Upgrade encoding if necessary. If we need to upgrade, we know that * this value should be either appended (if > 0) or prepended (if < 0), * because it lies outside the range of existing values. */ // 默认 is->encoding 为 INTSET_ENC_INT16 (16位长) // 2.2.1. 即超过当前预设的位长,则需要增大预设,然后添加 // 此时的value可以确定: 要么是最大,要么是最小 (所以我们可以推断,此intset应该是有序的) if (valenc > intrev32ifbe(is->encoding)) { /* This always succeeds, so we don't need to curry *success. */ return intsetUpgradeAndAdd(is,value); } else { /* Abort if the value is already present in the set. * This call will populate "pos" with the right position to insert * the value when it cannot be found. */ // 2.2.2. 在当前环境下添加value // 找到value则说明元素已存在,不可再添加 // pos 保存比value小的第1个元素的位置 if (intsetSearch(is,value,&pos)) { if (success) *success = 0; return is; } is = intsetResize(is,intrev32ifbe(is->length)+1); // 在pos不是末尾位置时,需要留出空位,依次移动后面的元素 if (pos < intrev32ifbe(is->length)) intsetMoveTail(is,pos,pos+1); } // 针对编码位不变更的情况下设置pos位置的值 _intsetSet(is,pos,value); is->length = intrev32ifbe(intrev32ifbe(is->length)+1); return is; } // 判断 value 的位长 // INTSET_ENC_INT16 < INTSET_ENC_INT32 < INTSET_ENC_INT64 // 2 < 4 < 8 /* Return the required encoding for the provided value. */ static uint8_t _intsetValueEncoding(int64_t v) { if (v < INT32_MIN || v > INT32_MAX) return INTSET_ENC_INT64; else if (v < INT16_MIN || v > INT16_MAX) return INTSET_ENC_INT32; else return INTSET_ENC_INT16; } // 2.2.1. 升级预设位长,并添加value // intset.c /* Upgrades the intset to a larger encoding and inserts the given integer. */ static intset *intsetUpgradeAndAdd(intset *is, int64_t value) { uint8_t curenc = intrev32ifbe(is->encoding); uint8_t newenc = _intsetValueEncoding(value); int length = intrev32ifbe(is->length); int prepend = value < 0 ? 1 : 0; /* First set new encoding and resize */ is->encoding = intrev32ifbe(newenc); // 每次必进行扩容 is = intsetResize(is,intrev32ifbe(is->length)+1); /* Upgrade back-to-front so we don't overwrite values. * Note that the "prepend" variable is used to make sure we have an empty * space at either the beginning or the end of the intset. */ // 因编码发生变化,元素的位置已经不能一一对应,需要按照原来的编码依次转移过来 // 从后往前依次赋值,所以,内存位置上不存在覆盖问题(后面内存位置一定是空的),直接依次赋值即可(高效复制) while(length--) _intsetSet(is,length+prepend,_intsetGetEncoded(is,length,curenc)); /* Set the value at the beginning or the end. */ // 对新增加的元素,负数添加到第0位,否则添加到最后一个元素后一位 if (prepend) _intsetSet(is,0,value); else _intsetSet(is,intrev32ifbe(is->length),value); is->length = intrev32ifbe(intrev32ifbe(is->length)+1); return is; } /* Resize the intset */ static intset *intsetResize(intset *is, uint32_t len) { uint32_t size = len*intrev32ifbe(is->encoding); // malloc is = zrealloc(is,sizeof(intset)+size); return is; } // intset.c, 获取pos位置的值 /* Return the value at pos, given an encoding. */ static int64_t _intsetGetEncoded(intset *is, int pos, uint8_t enc) { int64_t v64; int32_t v32; int16_t v16; if (enc == INTSET_ENC_INT64) { memcpy(&v64,((int64_t*)is->contents)+pos,sizeof(v64)); memrev64ifbe(&v64); return v64; } else if (enc == INTSET_ENC_INT32) { memcpy(&v32,((int32_t*)is->contents)+pos,sizeof(v32)); memrev32ifbe(&v32); return v32; } else { memcpy(&v16,((int16_t*)is->contents)+pos,sizeof(v16)); memrev16ifbe(&v16); return v16; } } // intset.c, 设置pos位置的值,和数组赋值的实际意义差不多 // 只是这里数据类型是不确定的,所以使用指针进行赋值 /* Set the value at pos, using the configured encoding. */ static void _intsetSet(intset *is, int pos, int64_t value) { uint32_t encoding = intrev32ifbe(is->encoding); if (encoding == INTSET_ENC_INT64) { ((int64_t*)is->contents)[pos] = value; memrev64ifbe(((int64_t*)is->contents)+pos); } else if (encoding == INTSET_ENC_INT32) { ((int32_t*)is->contents)[pos] = value; memrev32ifbe(((int32_t*)is->contents)+pos); } else { ((int16_t*)is->contents)[pos] = value; memrev16ifbe(((int16_t*)is->contents)+pos); } } // 2.2.2. 在编码类型未变更的情况,需要查找可以存放value的位置(为了确认该value是否已存在,以及小于value的第一个位置赋值) /* Search for the position of "value". Return 1 when the value was found and * sets "pos" to the position of the value within the intset. Return 0 when * the value is not present in the intset and sets "pos" to the position * where "value" can be inserted. */ static uint8_t intsetSearch(intset *is, int64_t value, uint32_t *pos) { int min = 0, max = intrev32ifbe(is->length)-1, mid = -1; int64_t cur = -1; /* The value can never be found when the set is empty */ if (intrev32ifbe(is->length) == 0) { if (pos) *pos = 0; return 0; } else { /* Check for the case where we know we cannot find the value, * but do know the insert position. */ // 因 intset 是有序数组,即可以判定是否超出范围,如果超出则元素必定不存在 if (value > _intsetGet(is,intrev32ifbe(is->length)-1)) { if (pos) *pos = intrev32ifbe(is->length); return 0; } else if (value < _intsetGet(is,0)) { if (pos) *pos = 0; return 0; } } // 使用二分查找 while(max >= min) { mid = ((unsigned int)min + (unsigned int)max) >> 1; cur = _intsetGet(is,mid); if (value > cur) { min = mid+1; } else if (value < cur) { max = mid-1; } else { // 找到了 break; } } if (value == cur) { if (pos) *pos = mid; return 1; } else { // 在没有找到的情况下,min就是第一个比 value 小的元素 if (pos) *pos = min; return 0; } } // intset移动(内存移动) static void intsetMoveTail(intset *is, uint32_t from, uint32_t to) { void *src, *dst; uint32_t bytes = intrev32ifbe(is->length)-from; uint32_t encoding = intrev32ifbe(is->encoding); if (encoding == INTSET_ENC_INT64) { src = (int64_t*)is->contents+from; dst = (int64_t*)is->contents+to; bytes *= sizeof(int64_t); } else if (encoding == INTSET_ENC_INT32) { src = (int32_t*)is->contents+from; dst = (int32_t*)is->contents+to; bytes *= sizeof(int32_t); } else { src = (int16_t*)is->contents+from; dst = (int16_t*)is->contents+to; bytes *= sizeof(int16_t); } memmove(dst,src,bytes); } // 2.3. 转换intset编码为 ht 编码 (如果遇到string型的value或者intset数量大于阀值(默认:512)时) // t_set.c, 类型转换 /* Convert the set to specified encoding. The resulting dict (when converting * to a hash table) is presized to hold the number of elements in the original * set. */ void setTypeConvert(robj *setobj, int enc) { setTypeIterator *si; // 要求外部必须保证 set类型且 intset 编码 serverAssertWithInfo(NULL,setobj,setobj->type == OBJ_SET && setobj->encoding == OBJ_ENCODING_INTSET); if (enc == OBJ_ENCODING_HT) { int64_t intele; // 直接创建一个 dict 来容纳数据 dict *d = dictCreate(&setDictType,NULL); sds element; /* Presize the dict to avoid rehashing */ // 直接一次性扩容成需要的大小 dictExpand(d,intsetLen(setobj->ptr)); /* To add the elements we extract integers and create redis objects */ // setTypeIterator 迭代器是转换的关键 si = setTypeInitIterator(setobj); while (setTypeNext(si,&element,&intele) != -1) { // element:ht编码时的key, intele: intset编码时的value element = sdsfromlonglong(intele); // 因set特性保证是无重复元素,所以添加dict时,必然应成功 // 此处应无 rehash, 而是直接计算 hashCode, 放置元素, 时间复杂度 O(1) serverAssert(dictAdd(d,element,NULL) == DICT_OK); } // 释放迭代器 setTypeReleaseIterator(si); setobj->encoding = OBJ_ENCODING_HT; zfree(setobj->ptr); setobj->ptr = d; } else { serverPanic("Unsupported set conversion"); } } // t_set.c, 获取set集合的迭代器 setTypeIterator *setTypeInitIterator(robj *subject) { setTypeIterator *si = zmalloc(sizeof(setTypeIterator)); // 设置迭代器公用信息 si->subject = subject; si->encoding = subject->encoding; // hash表则需要再迭代 dict if (si->encoding == OBJ_ENCODING_HT) { si->di = dictGetIterator(subject->ptr); } // intset 比较简单,直接设置下标即可 else if (si->encoding == OBJ_ENCODING_INTSET) { si->ii = 0; } else { serverPanic("Unknown set encoding"); } return si; } // dict.c, dict迭代器初始化 dictIterator *dictGetIterator(dict *d) { dictIterator *iter = zmalloc(sizeof(*iter)); iter->d = d; iter->table = 0; iter->index = -1; iter->safe = 0; iter->entry = NULL; iter->nextEntry = NULL; return iter; } // t_set.c, /* Move to the next entry in the set. Returns the object at the current * position. * * Since set elements can be internally be stored as SDS strings or * simple arrays of integers, setTypeNext returns the encoding of the * set object you are iterating, and will populate the appropriate pointer * (sdsele) or (llele) accordingly. * * Note that both the sdsele and llele pointers should be passed and cannot * be NULL since the function will try to defensively populate the non * used field with values which are easy to trap if misused. * * When there are no longer elements -1 is returned. */ int setTypeNext(setTypeIterator *si, sds *sdsele, int64_t *llele) { // hash表返回key if (si->encoding == OBJ_ENCODING_HT) { dictEntry *de = dictNext(si->di); if (de == NULL) return -1; *sdsele = dictGetKey(de); *llele = -123456789; /* Not needed. Defensive. */ } // intset 直接获取下标对应的元素即可 else if (si->encoding == OBJ_ENCODING_INTSET) { if (!intsetGet(si->subject->ptr,si->ii++,llele)) return -1; *sdsele = NULL; /* Not needed. Defensive. */ } else { serverPanic("Wrong set encoding in setTypeNext"); } return si->encoding; } // case1: intset直接叠加下标即可 // intset.c /* Sets the value to the value at the given position. When this position is * out of range the function returns 0, when in range it returns 1. */ uint8_t intsetGet(intset *is, uint32_t pos, int64_t *value) { if (pos < intrev32ifbe(is->length)) { *value = _intsetGet(is,pos); return 1; } return 0; } /* Return the value at pos, using the configured encoding. */ static int64_t _intsetGet(intset *is, int pos) { return _intsetGetEncoded(is,pos,intrev32ifbe(is->encoding)); } /* Return the value at pos, given an encoding. */ static int64_t _intsetGetEncoded(intset *is, int pos, uint8_t enc) { int64_t v64; int32_t v32; int16_t v16; if (enc == INTSET_ENC_INT64) { memcpy(&v64,((int64_t*)is->contents)+pos,sizeof(v64)); memrev64ifbe(&v64); return v64; } else if (enc == INTSET_ENC_INT32) { memcpy(&v32,((int32_t*)is->contents)+pos,sizeof(v32)); memrev32ifbe(&v32); return v32; } else { memcpy(&v16,((int16_t*)is->contents)+pos,sizeof(v16)); memrev16ifbe(&v16); return v16; } } // (附带)case2: dict的迭代 // dict.c, dict的迭代,存疑问 dictEntry *dictNext(dictIterator *iter) { // 一直迭代查找 while (1) { // iter->entry 为NULL, 有两种可能: 1. 初始化时; 2. 上一元素为迭代完成(hash冲突) if (iter->entry == NULL) { dictht *ht = &iter->d->ht[iter->table]; if (iter->index == -1 && iter->table == 0) { if (iter->safe) iter->d->iterators++; else iter->fingerprint = dictFingerprint(iter->d); } // 直接使用下标进行迭代,如果中间有空闲位置该如何处理?? // 看起来redis是使用了全量迭代元素的处理办法,即有可能有许多空迭代过程 // 一般地,也是进行两层迭代,jdk的hashmap迭代实现为直接找到下一次非空的元素为止 iter->index++; // 直到迭代完成所有元素,否则会直到找到一个元素为止 if (iter->index >= (long) ht->size) { if (dictIsRehashing(iter->d) && iter->table == 0) { iter->table++; iter->index = 0; ht = &iter->d->ht[1]; } else { break; } } iter->entry = ht->table[iter->index]; } else { // entry不为空,就一定有nextEntry?? iter->entry = iter->nextEntry; } // 如果当前entry为空,则继续迭代下一个 index if (iter->entry) { /* We need to save the 'next' here, the iterator user * may delete the entry we are returning. */ iter->nextEntry = iter->entry->next; return iter->entry; } } return NULL; }
其实sadd过程非常简单。与hash的实现方式只是在 dict 上的操作是一致的,但本质上是不一样的。我们通过一个时序图整体看一下:
三、sismember 元素查找操作
由于set本身的特性决定,它不会有许多查询功能也没必要提供丰富的查询功用。所以只能先挑这个来看看了。要确定一个元素是不是其成员,无非就是一个比较的过程。
// 用法: SISMEMBER key member // t_set.c, void sismemberCommand(client *c) { robj *set; if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,set,OBJ_SET)) return; // 主要方法 setTypeIsMember if (setTypeIsMember(set,c->argv[2]->ptr)) // 回复1 addReply(c,shared.cone); else // 回复0 addReply(c,shared.czero); } // t_set.c int setTypeIsMember(robj *subject, sds value) { long long llval; if (subject->encoding == OBJ_ENCODING_HT) { // hash 表的查找方式,hashCode 计算,链表查找,就这么简单 return dictFind((dict*)subject->ptr,value) != NULL; } else if (subject->encoding == OBJ_ENCODING_INTSET) { // 如果当前的set集合是 intset 编码的,则只有查找值也是整型的情况下才可能查找到元素 if (isSdsRepresentableAsLongLong(value,&llval) == C_OK) { // intset 查找,而且 intset 是有序的,所以直接使用二分查找即可 return intsetFind((intset*)subject->ptr,llval); } } else { serverPanic("Unknown set encoding"); } return 0; } /* Determine whether a value belongs to this set */ uint8_t intsetFind(intset *is, int64_t value) { uint8_t valenc = _intsetValueEncoding(value); // 最大范围检查,加二分查找 // intsetSearch 前面已介绍 return valenc <= intrev32ifbe(is->encoding) && intsetSearch(is,value,NULL); }
查找算法!
四、sinter 集合交集获取
两个set的数据集取交集,也是要看使用场景吧。(比如获取共同的好友)
在看redis的实现之前,我们可以自己先想想,如何实现两个集合次问题?(算法题)我只能想到无脑地两重迭代加hash的方式。你呢?
// 用法: SINTER key1 [key2] // t_set.c, sinter 实现 void sinterCommand(client *c) { // 第三个参数是用来存储 交集结果的,两段代码已做复用,说明存储过程还是比较简单的 sinterGenericCommand(c,c->argv+1,c->argc-1,NULL); } // t_set.c, 求n个key的集合交集 void sinterGenericCommand(client *c, robj **setkeys, unsigned long setnum, robj *dstkey) { robj **sets = zmalloc(sizeof(robj*)*setnum); setTypeIterator *si; robj *dstset = NULL; sds elesds; int64_t intobj; void *replylen = NULL; unsigned long j, cardinality = 0; int encoding; for (j = 0; j < setnum; j++) { // 依次查找每个key的set实例 robj *setobj = dstkey ? lookupKeyWrite(c->db,setkeys[j]) : lookupKeyRead(c->db,setkeys[j]); // 只要有一个set为空,则交集必定为为,无需再找 if (!setobj) { zfree(sets); if (dstkey) { // 没有交集,直接将dstKey 删除,注意此逻辑?? if (dbDelete(c->db,dstkey)) { signalModifiedKey(c->db,dstkey); server.dirty++; } addReply(c,shared.czero); } else { addReply(c,shared.emptymultibulk); } return; } if (checkType(c,setobj,OBJ_SET)) { zfree(sets); return; } sets[j] = setobj; } /* Sort sets from the smallest to largest, this will improve our * algorithm's performance */ // 快速排序算法,将 sets 按照元素长度做排序,使最少元素的set排在最前面 qsort(sets,setnum,sizeof(robj*),qsortCompareSetsByCardinality); /* The first thing we should output is the total number of elements... * since this is a multi-bulk write, but at this stage we don't know * the intersection set size, so we use a trick, append an empty object * to the output list and save the pointer to later modify it with the * right length */ if (!dstkey) { replylen = addDeferredMultiBulkLength(c); } else { /* If we have a target key where to store the resulting set * create this key with an empty set inside */ dstset = createIntsetObject(); } /* Iterate all the elements of the first (smallest) set, and test * the element against all the other sets, if at least one set does * not include the element it is discarded */ // 看来redis也是直接通过迭代的方式来完成交集功能 // 迭代最少的set集合,依次查找后续的set集合,当遇到一个不存在的set时,上值被排除,否则是交集 si = setTypeInitIterator(sets[0]); while((encoding = setTypeNext(si,&elesds,&intobj)) != -1) { for (j = 1; j < setnum; j++) { if (sets[j] == sets[0]) continue; // 以下是查找过程 // 分 hash表查找 和 intset 编码查找 if (encoding == OBJ_ENCODING_INTSET) { /* intset with intset is simple... and fast */ // 两个集合都是 intset 编码,直接二分查找即可 if (sets[j]->encoding == OBJ_ENCODING_INTSET && !intsetFind((intset*)sets[j]->ptr,intobj)) { break; /* in order to compare an integer with an object we * have to use the generic function, creating an object * for this */ } else if (sets[j]->encoding == OBJ_ENCODING_HT) { // 编码不一致,但元素可能相同 // setTypeIsMember 复用前面的代码,直接查找即可 elesds = sdsfromlonglong(intobj); if (!setTypeIsMember(sets[j],elesds)) { sdsfree(elesds); break; } sdsfree(elesds); } } else if (encoding == OBJ_ENCODING_HT) { if (!setTypeIsMember(sets[j],elesds)) { break; } } } /* Only take action when all sets contain the member */ // 当迭代完所有集合,说明每个set中都存在该值,是交集(注意分析最后一个迭代) if (j == setnum) { // 不存储交集的情况下,直接响应元素值即可 if (!dstkey) { if (encoding == OBJ_ENCODING_HT) addReplyBulkCBuffer(c,elesds,sdslen(elesds)); else addReplyBulkLongLong(c,intobj); cardinality++; } // 要存储交集数据,将值存储到 dstset 中 else { if (encoding == OBJ_ENCODING_INTSET) { elesds = sdsfromlonglong(intobj); setTypeAdd(dstset,elesds); sdsfree(elesds); } else { setTypeAdd(dstset,elesds); } } } } setTypeReleaseIterator(si); if (dstkey) { /* Store the resulting set into the target, if the intersection * is not an empty set. */ // 存储集合之前会先把原来的数据删除,如果进行多次交集运算,dstKey 就相当于临时表咯 int deleted = dbDelete(c->db,dstkey); if (setTypeSize(dstset) > 0) { dbAdd(c->db,dstkey,dstset); addReplyLongLong(c,setTypeSize(dstset)); notifyKeyspaceEvent(NOTIFY_SET,"sinterstore", dstkey,c->db->id); } else { decrRefCount(dstset); addReply(c,shared.czero); if (deleted) notifyKeyspaceEvent(NOTIFY_GENERIC,"del", dstkey,c->db->id); } signalModifiedKey(c->db,dstkey); server.dirty++; } else { setDeferredMultiBulkLength(c,replylen,cardinality); } zfree(sets); } // compare 方法 int qsortCompareSetsByCardinality(const void *s1, const void *s2) { return setTypeSize(*(robj**)s1)-setTypeSize(*(robj**)s2); } // 快排样例 sort.lua -- extracted from Programming Pearls, page 110 function qsort(x,l,u,f) if l<u then local m=math.random(u-(l-1))+l-1 -- choose a random pivot in range l..u x[l],x[m]=x[m],x[l] -- swap pivot to first position local t=x[l] -- pivot value m=l local i=l+1 while i<=u do -- invariant: x[l+1..m] < t <= x[m+1..i-1] if f(x[i],t) then m=m+1 x[m],x[i]=x[i],x[m] -- swap x[i] and x[m] end i=i+1 end x[l],x[m]=x[m],x[l] -- swap pivot to a valid place -- x[l+1..m-1] < x[m] <= x[m+1..u] qsort(x,l,m-1,f) qsort(x,m+1,u,f) end end
sinter 看起来就是一个算法题嘛。
五、sdiffstore 差集处理
sinter交集是一算法题,那么sdiff差集应该也就是一道算法题而已。确认下:
// 用法: SDIFFSTORE destination key1 [key2] // t_set.c void sdiffstoreCommand(client *c) { // 看起来sdiff 与 sunion 共用了一段代码,为啥呢? // 想想 sql 中的 full join // c->argv[1] 是 dstKey sunionDiffGenericCommand(c,c->argv+2,c->argc-2,c->argv[1],SET_OP_DIFF); } // t_set.c, 差集并集运算 void sunionDiffGenericCommand(client *c, robj **setkeys, int setnum, robj *dstkey, int op) { robj **sets = zmalloc(sizeof(robj*)*setnum); setTypeIterator *si; robj *dstset = NULL; sds ele; int j, cardinality = 0; int diff_algo = 1; // 同样的套路,先查找各key的实例 // 不同的是,这里的key允许不存在,但不允许类型不一致 for (j = 0; j < setnum; j++) { robj *setobj = dstkey ? lookupKeyWrite(c->db,setkeys[j]) : lookupKeyRead(c->db,setkeys[j]); if (!setobj) { sets[j] = NULL; continue; } if (checkType(c,setobj,OBJ_SET)) { zfree(sets); return; } sets[j] = setobj; } /* Select what DIFF algorithm to use. * * Algorithm 1 is O(N*M) where N is the size of the element first set * and M the total number of sets. * * Algorithm 2 is O(N) where N is the total number of elements in all * the sets. * * We compute what is the best bet with the current input here. */ // 针对差集运算,做算法优化 if (op == SET_OP_DIFF && sets[0]) { long long algo_one_work = 0, algo_two_work = 0; for (j = 0; j < setnum; j++) { if (sets[j] == NULL) continue; algo_one_work += setTypeSize(sets[0]); algo_two_work += setTypeSize(sets[j]); } /* Algorithm 1 has better constant times and performs less operations * if there are elements in common. Give it some advantage. */ algo_one_work /= 2; diff_algo = (algo_one_work <= algo_two_work) ? 1 : 2; if (diff_algo == 1 && setnum > 1) { /* With algorithm 1 it is better to order the sets to subtract * by decreasing size, so that we are more likely to find * duplicated elements ASAP. */ qsort(sets+1,setnum-1,sizeof(robj*), qsortCompareSetsByRevCardinality); } } /* We need a temp set object to store our union. If the dstkey * is not NULL (that is, we are inside an SUNIONSTORE operation) then * this set object will be the resulting object to set into the target key*/ dstset = createIntsetObject(); if (op == SET_OP_UNION) { /* Union is trivial, just add every element of every set to the * temporary set. */ for (j = 0; j < setnum; j++) { if (!sets[j]) continue; /* non existing keys are like empty sets */ // 依次添加即可,对于 sunion 来说,有序是无意义的 si = setTypeInitIterator(sets[j]); while((ele = setTypeNextObject(si)) != NULL) { if (setTypeAdd(dstset,ele)) cardinality++; sdsfree(ele); } setTypeReleaseIterator(si); } } // 使用算法1, 依次迭代最大元素 else if (op == SET_OP_DIFF && sets[0] && diff_algo == 1) { /* DIFF Algorithm 1: * * We perform the diff by iterating all the elements of the first set, * and only adding it to the target set if the element does not exist * into all the other sets. * * This way we perform at max N*M operations, where N is the size of * the first set, and M the number of sets. */ si = setTypeInitIterator(sets[0]); while((ele = setTypeNextObject(si)) != NULL) { for (j = 1; j < setnum; j++) { if (!sets[j]) continue; /* no key is an empty set. */ if (sets[j] == sets[0]) break; /* same set! */ // 只要有一个相同,就不算是差集?? if (setTypeIsMember(sets[j],ele)) break; } // 这里的差集是所有set的值都不相同或者为空??? 尴尬了 if (j == setnum) { /* There is no other set with this element. Add it. */ setTypeAdd(dstset,ele); cardinality++; } sdsfree(ele); } setTypeReleaseIterator(si); } // 使用算法2,直接以第一个元素为基础,后续set做remove,最后剩下的就是差集 else if (op == SET_OP_DIFF && sets[0] && diff_algo == 2) { /* DIFF Algorithm 2: * * Add all the elements of the first set to the auxiliary set. * Then remove all the elements of all the next sets from it. * * This is O(N) where N is the sum of all the elements in every * set. */ for (j = 0; j < setnum; j++) { if (!sets[j]) continue; /* non existing keys are like empty sets */ si = setTypeInitIterator(sets[j]); while((ele = setTypeNextObject(si)) != NULL) { if (j == 0) { if (setTypeAdd(dstset,ele)) cardinality++; } else { if (setTypeRemove(dstset,ele)) cardinality--; } sdsfree(ele); } setTypeReleaseIterator(si); /* Exit if result set is empty as any additional removal * of elements will have no effect. */ if (cardinality == 0) break; } } /* Output the content of the resulting set, if not in STORE mode */ if (!dstkey) { addReplyMultiBulkLen(c,cardinality); si = setTypeInitIterator(dstset); // 响应差集列表 while((ele = setTypeNextObject(si)) != NULL) { addReplyBulkCBuffer(c,ele,sdslen(ele)); sdsfree(ele); } setTypeReleaseIterator(si); decrRefCount(dstset); } else { /* If we have a target key where to store the resulting set * create this key with the result set inside */ int deleted = dbDelete(c->db,dstkey); if (setTypeSize(dstset) > 0) { // 存储差集列表,响应差集个数 dbAdd(c->db,dstkey,dstset); addReplyLongLong(c,setTypeSize(dstset)); notifyKeyspaceEvent(NOTIFY_SET, op == SET_OP_UNION ? "sunionstore" : "sdiffstore", dstkey,c->db->id); } else { decrRefCount(dstset); addReply(c,shared.czero); if (deleted) notifyKeyspaceEvent(NOTIFY_GENERIC,"del", dstkey,c->db->id); } signalModifiedKey(c->db,dstkey); server.dirty++; } zfree(sets); } /* This is used by SDIFF and in this case we can receive NULL that should * be handled as empty sets. */ int qsortCompareSetsByRevCardinality(const void *s1, const void *s2) { robj *o1 = *(robj**)s1, *o2 = *(robj**)s2; return (o2 ? setTypeSize(o2) : 0) - (o1 ? setTypeSize(o1) : 0); }
额,这个差集的定义好像过于简单了,以至于实现都不复杂。
六、spop 获取一个元素
前面讲的基本都是增、查,虽然不存在改,但是还是可以简单看一下删掉操作。spop有两个作用,一、获取1或n个元素,二、删除1或n个元素。
// 用法: SPOP key [count] // t_set.c void spopCommand(client *c) { robj *set, *ele, *aux; sds sdsele; int64_t llele; int encoding; if (c->argc == 3) { // 弹出指定数量的元素,略 spopWithCountCommand(c); return; } else if (c->argc > 3) { addReply(c,shared.syntaxerr); return; } /* Make sure a key with the name inputted exists, and that it's type is * indeed a set */ if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.nullbulk)) == NULL || checkType(c,set,OBJ_SET)) return; /* Get a random element from the set */ // 1. 随机获取一个元素,这是 spop 的定义 encoding = setTypeRandomElement(set,&sdsele,&llele); /* Remove the element from the set */ // 2. 删除元素 if (encoding == OBJ_ENCODING_INTSET) { ele = createStringObjectFromLongLong(llele); set->ptr = intsetRemove(set->ptr,llele,NULL); } else { ele = createStringObject(sdsele,sdslen(sdsele)); setTypeRemove(set,ele->ptr); } notifyKeyspaceEvent(NOTIFY_SET,"spop",c->argv[1],c->db->id); /* Replicate/AOF this command as an SREM operation */ aux = createStringObject("SREM",4); rewriteClientCommandVector(c,3,aux,c->argv[1],ele); decrRefCount(aux); /* Add the element to the reply */ addReplyBulk(c,ele); decrRefCount(ele); /* Delete the set if it's empty */ if (setTypeSize(set) == 0) { dbDelete(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1],c->db->id); } /* Set has been modified */ signalModifiedKey(c->db,c->argv[1]); server.dirty++; } // 没啥好说的,就看下是如何随机的就好了 // t_set.c, 随机获取一个元素,赋值给 sdsele|llele /* Return random element from a non empty set. * The returned element can be a int64_t value if the set is encoded * as an "intset" blob of integers, or an SDS string if the set * is a regular set. * * The caller provides both pointers to be populated with the right * object. The return value of the function is the object->encoding * field of the object and is used by the caller to check if the * int64_t pointer or the redis object pointer was populated. * * Note that both the sdsele and llele pointers should be passed and cannot * be NULL since the function will try to defensively populate the non * used field with values which are easy to trap if misused. */ int setTypeRandomElement(robj *setobj, sds *sdsele, int64_t *llele) { if (setobj->encoding == OBJ_ENCODING_HT) { // 1.1. dict 型的随机 dictEntry *de = dictGetRandomKey(setobj->ptr); *sdsele = dictGetKey(de); *llele = -123456789; /* Not needed. Defensive. */ } else if (setobj->encoding == OBJ_ENCODING_INTSET) { // 1.2. intset 型的随机 *llele = intsetRandom(setobj->ptr); *sdsele = NULL; /* Not needed. Defensive. */ } else { serverPanic("Unknown set encoding"); } return setobj->encoding; } // 1.1. dict 型的随机 /* Return a random entry from the hash table. Useful to * implement randomized algorithms */ dictEntry *dictGetRandomKey(dict *d) { dictEntry *he, *orighe; unsigned int h; int listlen, listele; if (dictSize(d) == 0) return NULL; if (dictIsRehashing(d)) _dictRehashStep(d); // 基本原理就是一直接随机获取下标,直到有值 if (dictIsRehashing(d)) { do { /* We are sure there are no elements in indexes from 0 * to rehashidx-1 */ // 获取随机下标,须保证在 两个hash表的范围内 h = d->rehashidx + (random() % (d->ht[0].size + d->ht[1].size - d->rehashidx)); he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] : d->ht[0].table[h]; } while(he == NULL); } else { do { h = random() & d->ht[0].sizemask; he = d->ht[0].table[h]; } while(he == NULL); } /* Now we found a non empty bucket, but it is a linked * list and we need to get a random element from the list. * The only sane way to do so is counting the elements and * select a random index. */ listlen = 0; orighe = he; // 对于hash冲突情况,再随机一次 while(he) { he = he->next; listlen++; } listele = random() % listlen; he = orighe; while(listele--) he = he->next; return he; } // 1.2. intset 型的随机 // intset.c /* Return random member */ int64_t intsetRandom(intset *is) { // 这个随机就简单了,直接获取随机下标,因为intset可以保证自身元素的完整性 return _intsetGet(is,rand()%intrev32ifbe(is->length)); }
OK, 至此,整个set数据结构的解析算是完整了。
总体来说,set和hash类型的实现方式还是有很多不同的。不过没啥大难度,就是几个算法题解罢了。