120行代码爬取豆瓣电影,附源码!就拿刚上映的复联4做例子!

学习爬虫,拿豆瓣电影进行练手,无奈豆瓣电影存在反爬机制,爬完250就会重定向要求我进行登陆操作,所以我这一次只爬取前50进行相关测试,废话不多说,我们来看下源代码:

120行代码爬取豆瓣电影,附源码!就拿刚上映的复联4做例子!

120行代码爬取豆瓣电影,附源码!就拿刚上映的复联4做例子!

import requests
from bs4 import BeautifulSoup
import re
import pandas
headers = {
 'Host':'movie.douban.com',
 'Origin':'movie.douban.com',
 'User-Agent':'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Mobile Safari/537.36',
}
base_url = 'https://movie.douban.com/top250?start={}&filter='
response = requests.get('https://movie.douban.com/top250?start=0&filter=', headers = headers)
if response.status_code == 200:
 # print(response.text)
 pass
pattern1 = re.compile('<div.*?class="item">.*?<div.*?class="pic">.*?<a.*?href="(.*?)">', re.S) # 去掉所有换行符,并用正则表达式去匹配每一个页面的具体电影
urls = re.findall(pattern1, response.text)
directors = [] # 导演
names = [] # 电影名
stars = [] # 主演
countrys = [] # 电影的出产地
languages = [] # 电影语言
headers_urls = {
 'Host':'movie.douban.com',
 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36'
}
# <span property="v:itemreviewed">肖申克的救赎 The Shawshank Redemption</span>
# <a href="/celebrity/1047973/" rel="v:directedBy">弗兰克·德拉邦特</a>
# <a href="/celebrity/1054521/" rel="v:starring">蒂姆·罗宾斯</a>
def base_urls(base_url):
 urls = []
 # 这里我们只能前两页做测试,所以range只设置到了50
 # for i in range(0, 275, 25):
 # true_url = base_url.format(i)
 # print(true_url)
 for i in range(0, 50, 25):
 true_url = base_url.format(i)
 print(true_url)
 response = requests.get(true_url, headers=headers)
 if response.status_code == 200:
 # print(response.text)
 pattern1 = re.compile('<div.*?class="item">.*?<div.*?class="pic">.*?<a.*?href="(.*?)">',re.S)
 # 去掉所有换行符,并用正则表达式去匹配每一个页面的具体电影
 url = re.findall(pattern1, response.text)
 # 因为这里是用findall,他返回的是一个列表,如果我们直接append,会导致列表嵌套,故我们这里用个for循环提取出列表的元素再append进去
 for i in url:
 urls.append(i)
 return urls
def parse_url(urls):
 # 因为只拿前两页做测试,所以range设置到50
 for i in range(0, 50, 1):
 res = requests.get(urls[i], headers = headers_urls)
 print(res)
 if res.status_code == 200:
 soup = BeautifulSoup(res.text, 'lxml')
 # 爬取电影名
 name = (soup.find('span', property="v:itemreviewed"))
 names.append(name.text)
 # print(names)
 # 爬取导演
 director = soup.find('a', rel="v:directedBy")
 directors.append(director.text)
 # print(director.text)
 # 爬取明星
 star_save = []
 for star in soup.find_all('a', rel="v:starring"):
 star_save.append(star.text)
 stars.append(star_save)
 # print(stars)
 # 爬取制片国家
 #<span class="pl">制片国家/地区:</span> 美国<br>
 # 学到的知识点:通过匹配文本内容找下个兄弟节点
 country = soup.find('span', text='制片国家/地区:').next_sibling[1:]
 countrys.append(country)
 # print(countrys)
 # 爬取影片语言
 # <span class="pl">语言:</span>
 language = soup.find('span', text='语言:').next_sibling[1:]
 languages.append(language)
 # print(language)
# print(directors)
# print(true_director)
# print(a)
if __name__ == '__main__':
 base = base_urls(base_url)
 print(base)
 print(len(base))
 parse_url(base)
 print(countrys)
 print(directors)
 print(languages)
 print(names)
 #
 # 最后我们将数据写入到一个excel表格里
 info ={'Filmname':names, 'Directors':directors, 'Country':countrys, 'Languages':languages}
 pdfile = pandas.DataFrame(info)
 # pdlook.to_excel('链家.xlsx', sheet_name="链家二手房广州")
 pdfile.to_excel('DoubanFilm.xlsx', sheet_name="豆瓣电影")

这次用到的还是requests库,BeautifulSoup解析库,和re进行辅助的正则匹配库,最后老样子利用pandas的DataFrame进行excel的写入。可以添加QQ群808713721,有实训项目,有清晰源码,有相应的文件.


 

上一篇:120道 Python 面试题


下一篇:5.14编写程序,提示用户从键盘输入一个正整数,然后以降序的顺序输出该数的最小因子,例如如果输入的数是120 应该显示的是5 , 3 , 2 , 2,2