LeetCode算法题解 1037-有效的回旋镖

题目描述

题解:

这种题目有多种解法:

  1. 两点能构成一条直线,然后判断第三个点是否在这条直线上即可
  2. 如果三点在一条直线上,那么构成的面积肯定就是为0,如果没在一条直线上,面积就是非0的。

代码:

class Solution {
public:
    bool isBoomerang(vector<vector<int>>& points) {
        int x1,y1;
        x1 = points[0][0]; y1 = points[0][1];
        int x2,y2;
        x2 = points[1][0]; y2 = points[1][1];
        int x3,y3;
        x3 = points[2][0]; y3 = points[2][1];
        /* 方法一:直线法
        if((y3 - y1)*(x1 - x2) == (y1 - y2)*(x3 - x1))
        {
            return false;
        }
        else
        {
            return true;
        }*/
        /* 方法二:面积法(已知三点直接求出三角形的面积)
        */
        int res = abs(x1*y2 + y1*x3 + x2*y3 - x1*y3 - y1*x2 - y2*x3);
        double area = 1.0*res/2;// 计算三角形面积的两倍(一定是整形,后面再/2就可以了)
        if(area == 0)
        {
            return false;
        }
        else
        {
            return true;
        }
    }
};
LeetCode算法题解 1037-有效的回旋镖LeetCode算法题解 1037-有效的回旋镖 东瓜lqd 发布了186 篇原创文章 · 获赞 12 · 访问量 1万+ 私信 关注
上一篇:最优化算法python实现篇(1)——进退法


下一篇:【ACM算法】-- 数学问题篇 - 分解素因数