1、Set集合
class set(object):
"""
set() -> new empty set object
set(iterable) -> new set object Build an unordered collection of unique elements.
"""
def add(self, *args, **kwargs): # real signature unknown
""" 添加 """
"""
Add an element to a set. This has no effect if the element is already present.
"""
pass def clear(self, *args, **kwargs): # real signature unknown
""" Remove all elements from this set. """
pass def copy(self, *args, **kwargs): # real signature unknown
""" Return a shallow copy of a set. """
pass def difference(self, *args, **kwargs): # real signature unknown
"""
Return the difference of two or more sets as a new set. (i.e. all elements that are in this set but not the others.)
"""
pass def difference_update(self, *args, **kwargs): # real signature unknown
""" 删除当前set中的所有包含在 new set 里的元素 """
""" Remove all elements of another set from this set. """
pass def discard(self, *args, **kwargs): # real signature unknown
""" 移除元素 """
"""
Remove an element from a set if it is a member. If the element is not a member, do nothing.
"""
pass def intersection(self, *args, **kwargs): # real signature unknown
""" 取交集,新创建一个set """
"""
Return the intersection of two or more sets as a new set. (i.e. elements that are common to all of the sets.)
"""
pass def intersection_update(self, *args, **kwargs): # real signature unknown
""" 取交集,修改原来set """
""" Update a set with the intersection of itself and another. """
pass def isdisjoint(self, *args, **kwargs): # real signature unknown
""" 如果没有交集,返回true """
""" Return True if two sets have a null intersection. """
pass def issubset(self, *args, **kwargs): # real signature unknown
""" 是否是子集 """
""" Report whether another set contains this set. """
pass def issuperset(self, *args, **kwargs): # real signature unknown
""" 是否是父集 """
""" Report whether this set contains another set. """
pass def pop(self, *args, **kwargs): # real signature unknown
""" 移除 """
"""
Remove and return an arbitrary set element.
Raises KeyError if the set is empty.
"""
pass def remove(self, *args, **kwargs): # real signature unknown
""" 移除 """
"""
Remove an element from a set; it must be a member. If the element is not a member, raise a KeyError.
"""
pass def symmetric_difference(self, *args, **kwargs): # real signature unknown
""" 差集,创建新对象"""
"""
Return the symmetric difference of two sets as a new set. (i.e. all elements that are in exactly one of the sets.)
"""
pass def symmetric_difference_update(self, *args, **kwargs): # real signature unknown
""" 差集,改变原来 """
""" Update a set with the symmetric difference of itself and another. """
pass def union(self, *args, **kwargs): # real signature unknown
""" 并集 """
"""
Return the union of sets as a new set. (i.e. all elements that are in either set.)
"""
pass def update(self, *args, **kwargs): # real signature unknown
""" 更新 """
""" Update a set with the union of itself and others. """
pass def __and__(self, y): # real signature unknown; restored from __doc__
""" x.__and__(y) <==> x&y """
pass def __cmp__(self, y): # real signature unknown; restored from __doc__
""" x.__cmp__(y) <==> cmp(x,y) """
pass def __contains__(self, y): # real signature unknown; restored from __doc__
""" x.__contains__(y) <==> y in x. """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __iand__(self, y): # real signature unknown; restored from __doc__
""" x.__iand__(y) <==> x&=y """
pass def __init__(self, seq=()): # known special case of set.__init__
"""
set() -> new empty set object
set(iterable) -> new set object Build an unordered collection of unique elements.
# (copied from class doc)
"""
pass def __ior__(self, y): # real signature unknown; restored from __doc__
""" x.__ior__(y) <==> x|=y """
pass def __isub__(self, y): # real signature unknown; restored from __doc__
""" x.__isub__(y) <==> x-=y """
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass def __ixor__(self, y): # real signature unknown; restored from __doc__
""" x.__ixor__(y) <==> x^=y """
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __or__(self, y): # real signature unknown; restored from __doc__
""" x.__or__(y) <==> x|y """
pass def __rand__(self, y): # real signature unknown; restored from __doc__
""" x.__rand__(y) <==> y&x """
pass def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __ror__(self, y): # real signature unknown; restored from __doc__
""" x.__ror__(y) <==> y|x """
pass def __rsub__(self, y): # real signature unknown; restored from __doc__
""" x.__rsub__(y) <==> y-x """
pass def __rxor__(self, y): # real signature unknown; restored from __doc__
""" x.__rxor__(y) <==> y^x """
pass def __sizeof__(self): # real signature unknown; restored from __doc__
""" S.__sizeof__() -> size of S in memory, in bytes """
pass def __sub__(self, y): # real signature unknown; restored from __doc__
""" x.__sub__(y) <==> x-y """
pass def __xor__(self, y): # real signature unknown; restored from __doc__
""" x.__xor__(y) <==> x^y """
pass __hash__ = None set
Set 源码剖析
实例解析:
#-------------------------------set集合案例-------------------------------#
#set add()
#语法set.add(self, *args, **kwargs) # Ll=[] #创建一个列表
# S1=set(Ll) #将列表加入集合,
# S1.add('chen')
# print(S1,Ll) #>>> {'chen'} [] (列表本身元素并不增加,赋值的集合变量增加)
# # 可以直接创建一个集合
# S2=set()
# S2.add('CHEN')
# print(type(S2)) #>>><class 'set'>
# #可以将列表设置为集合,但是集合只能add一个元素,不能add多个元素
# S1=[1,2,3,4]
# S2=set()
# S2.add(S1)
# print(S2,S1) #>>>TypeError: unhashable type: 'list' # set.clear() #清除集合 #set.copy() #浅拷贝一个集合 #差集
#set.difference()
# S1=set([1,2,3,4])
# S2=set([2,3,5])
# print(S1.difference(S2)) #取两个集合之间的差集 {1,4} #取差集并且更新
#set.difference_update()
# S1=set([1,2,3,4])
# S2=set([2,3,5])
# S1.difference_update(S2)
# print(S1) #>>> {1,4} # set.discard() #从集合中删除一个元素
# S1=set([1,2,3,4])
# S1.discard(2)
# print(S1) #>>>{1,3,4} #交集
# set.intersection()
# S1=set([1,2,3,4])
# S2=([2,3,5] )
# S3=S1.intersection(S2)
# print(S3) #>>> {2,3} #set.intersection_update() #取交集并更新
# S1=set([1,2,3,4])
# S2=set([2,3,5])
# S1.intersection_update(S2)
# print(S1) # >>> {2,3} #set.isdisjoint() 判断有没有交集,有返回True,否则返回False
# S1=set([1,2,3,4])
# S2=set([7,6,5])
# print(S1.isdisjoint(S2)) #>>>True #子集 判断集合中的所有元素是否都是另一个集合的子集,是返回True,
# set.issubset()
# S1=set([1,2,3,4])
# S2=set([2,3])
# print(S2.issubset(S1)) >>> True #set.issuperset() 判断集合中的所有元素是否是另一个集合的父集,是返回True
# S1=set([1,2,3,4])
# S2=set([2,3])
# print(S1.issuperset(S2)) #>>> True #set.pop() 删除集合中的第一个元素
# S1=set([1,2,3,4])
# S1.pop()
# print(S1) #{2, 3, 4} # set.remove() 指定删除集合中的任意一个元素
# S1=set([1,2,3,4])
# S1.remove(2)
# print(S1) #>>> {1, 3, 4} # set.symmetric_difference() 取交差交集
# S1=set([1,2,3,4])
# S2=set([2,3,5])
# print(S1.symmetric_difference(S2)) #{1, 4, 5} # set.symmetric_difference_update() 取交差交集
# S1=set([1,2,3,4])
# S2=set([2,3,5])
# S1.symmetric_difference_update(S2)
# print(S1)#>>>{1, 4, 5} # S1.union()#集合相加,返回一个新的集合
# S1=set([1,2,3,4])
# S2=set([7,8])
# S3=S1.union(S2)
# print(S3) #{1, 2, 3, 4, 7, 8}
Set
2、collection
2.1 Counter
########################################################################
### Counter
######################################################################## class Counter(dict):
'''Dict subclass for counting hashable items. Sometimes called a bag
or multiset. Elements are stored as dictionary keys and their counts
are stored as dictionary values. >>> c = Counter('abcdeabcdabcaba') # count elements from a string >>> c.most_common(3) # three most common elements
[('a', 5), ('b', 4), ('c', 3)]
>>> sorted(c) # list all unique elements
['a', 'b', 'c', 'd', 'e']
>>> ''.join(sorted(c.elements())) # list elements with repetitions
'aaaaabbbbcccdde'
>>> sum(c.values()) # total of all counts >>> c['a'] # count of letter 'a'
>>> for elem in 'shazam': # update counts from an iterable
... c[elem] += 1 # by adding 1 to each element's count
>>> c['a'] # now there are seven 'a'
>>> del c['b'] # remove all 'b'
>>> c['b'] # now there are zero 'b' >>> d = Counter('simsalabim') # make another counter
>>> c.update(d) # add in the second counter
>>> c['a'] # now there are nine 'a' >>> c.clear() # empty the counter
>>> c
Counter() Note: If a count is set to zero or reduced to zero, it will remain
in the counter until the entry is deleted or the counter is cleared: >>> c = Counter('aaabbc')
>>> c['b'] -= 2 # reduce the count of 'b' by two
>>> c.most_common() # 'b' is still in, but its count is zero
[('a', 3), ('c', 1), ('b', 0)] '''
# References:
# http://en.wikipedia.org/wiki/Multiset
# http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
# http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
# http://code.activestate.com/recipes/259174/
# Knuth, TAOCP Vol. II section 4.6.3 def __init__(self, iterable=None, **kwds):
'''Create a new, empty Counter object. And if given, count elements
from an input iterable. Or, initialize the count from another mapping
of elements to their counts. >>> c = Counter() # a new, empty counter
>>> c = Counter('gallahad') # a new counter from an iterable
>>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
>>> c = Counter(a=4, b=2) # a new counter from keyword args '''
super(Counter, self).__init__()
self.update(iterable, **kwds) def __missing__(self, key):
""" 对于不存在的元素,返回计数器为0 """
'The count of elements not in the Counter is zero.'
# Needed so that self[missing_item] does not raise KeyError
return 0 def most_common(self, n=None):
""" 数量大于等n的所有元素和计数器 """
'''List the n most common elements and their counts from the most
common to the least. If n is None, then list all element counts. >>> Counter('abcdeabcdabcaba').most_common(3)
[('a', 5), ('b', 4), ('c', 3)] '''
# Emulate Bag.sortedByCount from Smalltalk
if n is None:
return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1)) def elements(self):
""" 计数器中的所有元素,注:此处非所有元素集合,而是包含所有元素集合的迭代器 """
'''Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C'] # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
>>> product = 1
>>> for factor in prime_factors.elements(): # loop over factors
... product *= factor # and multiply them
>>> product Note, if an element's count has been set to zero or is a negative
number, elements() will ignore it. '''
# Emulate Bag.do from Smalltalk and Multiset.begin from C++.
return _chain.from_iterable(_starmap(_repeat, self.iteritems())) # Override dict methods where necessary @classmethod
def fromkeys(cls, iterable, v=None):
# There is no equivalent method for counters because setting v=1
# means that no element can have a count greater than one.
raise NotImplementedError(
'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') def update(self, iterable=None, **kwds):
""" 更新计数器,其实就是增加;如果原来没有,则新建,如果有则加一 """
'''Like dict.update() but add counts instead of replacing them. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.update('witch') # add elements from another iterable
>>> d = Counter('watch')
>>> c.update(d) # add elements from another counter
>>> c['h'] # four 'h' in which, witch, and watch '''
# The regular dict.update() operation makes no sense here because the
# replace behavior results in the some of original untouched counts
# being mixed-in with all of the other counts for a mismash that
# doesn't have a straight-forward interpretation in most counting
# contexts. Instead, we implement straight-addition. Both the inputs
# and outputs are allowed to contain zero and negative counts. if iterable is not None:
if isinstance(iterable, Mapping):
if self:
self_get = self.get
for elem, count in iterable.iteritems():
self[elem] = self_get(elem, 0) + count
else:
super(Counter, self).update(iterable) # fast path when counter is empty
else:
self_get = self.get
for elem in iterable:
self[elem] = self_get(elem, 0) + 1
if kwds:
self.update(kwds) def subtract(self, iterable=None, **kwds):
""" 相减,原来的计数器中的每一个元素的数量减去后添加的元素的数量 """
'''Like dict.update() but subtracts counts instead of replacing them.
Counts can be reduced below zero. Both the inputs and outputs are
allowed to contain zero and negative counts. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.subtract('witch') # subtract elements from another iterable
>>> c.subtract(Counter('watch')) # subtract elements from another counter
>>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
>>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
-1 '''
if iterable is not None:
self_get = self.get
if isinstance(iterable, Mapping):
for elem, count in iterable.items():
self[elem] = self_get(elem, 0) - count
else:
for elem in iterable:
self[elem] = self_get(elem, 0) - 1
if kwds:
self.subtract(kwds) def copy(self):
""" 拷贝 """
'Return a shallow copy.'
return self.__class__(self) def __reduce__(self):
""" 返回一个元组(类型,元组) """
return self.__class__, (dict(self),) def __delitem__(self, elem):
""" 删除元素 """
'Like dict.__delitem__() but does not raise KeyError for missing values.'
if elem in self:
super(Counter, self).__delitem__(elem) def __repr__(self):
if not self:
return '%s()' % self.__class__.__name__
items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
return '%s({%s})' % (self.__class__.__name__, items) # Multiset-style mathematical operations discussed in:
# Knuth TAOCP Volume II section 4.6.3 exercise 19
# and at http://en.wikipedia.org/wiki/Multiset
#
# Outputs guaranteed to only include positive counts.
#
# To strip negative and zero counts, add-in an empty counter:
# c += Counter() def __add__(self, other):
'''Add counts from two counters. >>> Counter('abbb') + Counter('bcc')
Counter({'b': 4, 'c': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count + other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result def __sub__(self, other):
''' Subtract count, but keep only results with positive counts. >>> Counter('abbbc') - Counter('bccd')
Counter({'b': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count - other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count < 0:
result[elem] = 0 - count
return result def __or__(self, other):
'''Union is the maximum of value in either of the input counters. >>> Counter('abbb') | Counter('bcc')
Counter({'b': 3, 'c': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = other_count if count < other_count else count
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result def __and__(self, other):
''' Intersection is the minimum of corresponding counts. >>> Counter('abbb') & Counter('bcc')
Counter({'b': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = count if count < other_count else other_count
if newcount > 0:
result[elem] = newcount
return result Counter Counter
Counter计数器源码剖析
Counter实例解析
#-------------------------------------collection------------------------------------------#
import collections
#-------------------------------------Counter计数器-----------------------------------------#
#Counter计数器 统计元素中出现元素的次数
# C=('aaaaaaaaaaabbbbbbcccccccccc')
# print(collections.Counter(C)) #Counter({'a': 11, 'c': 10, 'b': 6})
#clear 清除计数器信息
# A=collections.Counter('saascbdmnzuisdd')
# A.clear()
# print(A)
#生成一个字典
# A=collections.Counter(a=4, b=2)
# print(A) #>>>Counter({'a': 4, 'b': 2})
#对于不存在的元素 返回0
# B=A.__missing__('c')
# print(B)
#返回前N个计数器内元素的信息
# A=collections.Counter('aaaabbbccdeeeeeee').most_common(2)
# print(A)
# A=collections.Counter('aaabbc')
# print(sorted(A.elements())) #>>>['a', 'a', 'a', 'b', 'b', 'c'] #sorted等同于以下解释
# B=A.elements()
# for i in B:print(i) #update() 更新一个计数器,没有则增加,有加1
# A=collections.Counter('aaabbc')
# A.update('e')
# print(A) #subtract()根据指定的元素的数量删除计数器原来的元素数量
# A=collections.Counter('aaabbc')
# A.subtract('aaae')
# print(A)
Counter
2.2 OrderedDict
class OrderedDict(dict):
'Dictionary that remembers insertion order'
# An inherited dict maps keys to values.
# The inherited dict provides __getitem__, __len__, __contains__, and get.
# The remaining methods are order-aware.
# Big-O running times for all methods are the same as regular dictionaries. # The internal self.__map dict maps keys to links in a doubly linked list.
# The circular doubly linked list starts and ends with a sentinel element.
# The sentinel element never gets deleted (this simplifies the algorithm).
# Each link is stored as a list of length three: [PREV, NEXT, KEY]. def __init__(self, *args, **kwds):
'''Initialize an ordered dictionary. The signature is the same as
regular dictionaries, but keyword arguments are not recommended because
their insertion order is arbitrary. '''
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
try:
self.__root
except AttributeError:
self.__root = root = [] # sentinel node
root[:] = [root, root, None]
self.__map = {}
self.__update(*args, **kwds) def __setitem__(self, key, value, dict_setitem=dict.__setitem__):
'od.__setitem__(i, y) <==> od[i]=y'
# Setting a new item creates a new link at the end of the linked list,
# and the inherited dictionary is updated with the new key/value pair.
if key not in self:
root = self.__root
last = root[0]
last[1] = root[0] = self.__map[key] = [last, root, key]
return dict_setitem(self, key, value) def __delitem__(self, key, dict_delitem=dict.__delitem__):
'od.__delitem__(y) <==> del od[y]'
# Deleting an existing item uses self.__map to find the link which gets
# removed by updating the links in the predecessor and successor nodes.
dict_delitem(self, key)
link_prev, link_next, _ = self.__map.pop(key)
link_prev[1] = link_next # update link_prev[NEXT]
link_next[0] = link_prev # update link_next[PREV] def __iter__(self):
'od.__iter__() <==> iter(od)'
# Traverse the linked list in order.
root = self.__root
curr = root[1] # start at the first node
while curr is not root:
yield curr[2] # yield the curr[KEY]
curr = curr[1] # move to next node def __reversed__(self):
'od.__reversed__() <==> reversed(od)'
# Traverse the linked list in reverse order.
root = self.__root
curr = root[0] # start at the last node
while curr is not root:
yield curr[2] # yield the curr[KEY]
curr = curr[0] # move to previous node def clear(self):
'od.clear() -> None. Remove all items from od.'
root = self.__root
root[:] = [root, root, None]
self.__map.clear()
dict.clear(self) # -- the following methods do not depend on the internal structure -- def keys(self):
'od.keys() -> list of keys in od'
return list(self) def values(self):
'od.values() -> list of values in od'
return [self[key] for key in self] def items(self):
'od.items() -> list of (key, value) pairs in od'
return [(key, self[key]) for key in self] def iterkeys(self):
'od.iterkeys() -> an iterator over the keys in od'
return iter(self) def itervalues(self):
'od.itervalues -> an iterator over the values in od'
for k in self:
yield self[k] def iteritems(self):
'od.iteritems -> an iterator over the (key, value) pairs in od'
for k in self:
yield (k, self[k]) update = MutableMapping.update __update = update # let subclasses override update without breaking __init__ __marker = object() def pop(self, key, default=__marker):
'''od.pop(k[,d]) -> v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError
is raised. '''
if key in self:
result = self[key]
del self[key]
return result
if default is self.__marker:
raise KeyError(key)
return default def setdefault(self, key, default=None):
'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
if key in self:
return self[key]
self[key] = default
return default def popitem(self, last=True):
'''od.popitem() -> (k, v), return and remove a (key, value) pair.
Pairs are returned in LIFO order if last is true or FIFO order if false. '''
if not self:
raise KeyError('dictionary is empty')
key = next(reversed(self) if last else iter(self))
value = self.pop(key)
return key, value def __repr__(self, _repr_running={}):
'od.__repr__() <==> repr(od)'
call_key = id(self), _get_ident()
if call_key in _repr_running:
return '...'
_repr_running[call_key] = 1
try:
if not self:
return '%s()' % (self.__class__.__name__,)
return '%s(%r)' % (self.__class__.__name__, self.items())
finally:
del _repr_running[call_key] def __reduce__(self):
'Return state information for pickling'
items = [[k, self[k]] for k in self]
inst_dict = vars(self).copy()
for k in vars(OrderedDict()):
inst_dict.pop(k, None)
if inst_dict:
return (self.__class__, (items,), inst_dict)
return self.__class__, (items,) def copy(self):
'od.copy() -> a shallow copy of od'
return self.__class__(self) @classmethod
def fromkeys(cls, iterable, value=None):
'''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
If not specified, the value defaults to None. '''
self = cls()
for key in iterable:
self[key] = value
return self def __eq__(self, other):
'''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive
while comparison to a regular mapping is order-insensitive. '''
if isinstance(other, OrderedDict):
return dict.__eq__(self, other) and all(_imap(_eq, self, other))
return dict.__eq__(self, other) def __ne__(self, other):
'od.__ne__(y) <==> od!=y'
return not self == other # -- the following methods support python 3.x style dictionary views -- def viewkeys(self):
"od.viewkeys() -> a set-like object providing a view on od's keys"
return KeysView(self) def viewvalues(self):
"od.viewvalues() -> an object providing a view on od's values"
return ValuesView(self) def viewitems(self):
"od.viewitems() -> a set-like object providing a view on od's items"
return ItemsView(self) OrderedDict
OrderedDict
OrdereDict实例解析
2.3 defaultdict
class defaultdict(dict):
"""
defaultdict(default_factory[, ...]) --> dict with default factory The default factory is called without arguments to produce
a new value when a key is not present, in __getitem__ only.
A defaultdict compares equal to a dict with the same items.
All remaining arguments are treated the same as if they were
passed to the dict constructor, including keyword arguments.
"""
def copy(self): # real signature unknown; restored from __doc__
""" D.copy() -> a shallow copy of D. """
pass def __copy__(self, *args, **kwargs): # real signature unknown
""" D.copy() -> a shallow copy of D. """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __init__(self, default_factory=None, **kwargs): # known case of _collections.defaultdict.__init__
"""
defaultdict(default_factory[, ...]) --> dict with default factory The default factory is called without arguments to produce
a new value when a key is not present, in __getitem__ only.
A defaultdict compares equal to a dict with the same items.
All remaining arguments are treated the same as if they were
passed to the dict constructor, including keyword arguments. # (copied from class doc)
"""
pass def __missing__(self, key): # real signature unknown; restored from __doc__
"""
__missing__(key) # Called by __getitem__ for missing key; pseudo-code:
if self.default_factory is None: raise KeyError((key,))
self[key] = value = self.default_factory()
return value
"""
pass def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass default_factory = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""Factory for default value called by __missing__().""" defaultdict
defaultdict
defaultdict实例解析
A=collections.defaultdict(list)
A[1]=11
A[2]=22
A[3]=33
print(A)
print(A.keys())
print(A.values())
#有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。
#即: {'k1': 大于66 , 'k2': 小于66}
Num=[11,22,33,44,55,66,77,88,99]
A=collections.defaultdict(list)
for i in Num:
if i >= 66:
A['k1'].append(i)
else:
A['k2'].append(i)
print(A)
#>>> defaultdict(<class 'list'>, {'k2': [11, 22, 33, 44, 55], 'k1': [66, 77, 88, 99]})
defaultdict
2.4 可命名元组namedtuple
class Mytuple(__builtin__.tuple)
| Mytuple(x, y)
|
| Method resolution order:
| Mytuple
| __builtin__.tuple
| __builtin__.object
|
| Methods defined here:
|
| __getnewargs__(self)
| Return self as a plain tuple. Used by copy and pickle.
|
| __getstate__(self)
| Exclude the OrderedDict from pickling
|
| __repr__(self)
| Return a nicely formatted representation string
|
| _asdict(self)
| Return a new OrderedDict which maps field names to their values
|
| _replace(_self, **kwds)
| Return a new Mytuple object replacing specified fields with new values
|
| ----------------------------------------------------------------------
| Class methods defined here:
|
| _make(cls, iterable, new=<built-in method __new__ of type object>, len=<built-in function len>) from __builtin__.type
| Make a new Mytuple object from a sequence or iterable
|
| ----------------------------------------------------------------------
| Static methods defined here:
|
| __new__(_cls, x, y)
| Create new instance of Mytuple(x, y)
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
| Return a new OrderedDict which maps field names to their values
|
| x
| Alias for field number 0
|
| y
| Alias for field number 1
|
| ----------------------------------------------------------------------
| Data and other attributes defined here:
|
| _fields = ('x', 'y')
|
| ----------------------------------------------------------------------
| Methods inherited from __builtin__.tuple:
|
| __add__(...)
| x.__add__(y) <==> x+y
|
| __contains__(...)
| x.__contains__(y) <==> y in x
|
| __eq__(...)
| x.__eq__(y) <==> x==y
|
| __ge__(...)
| x.__ge__(y) <==> x>=y
|
| __getattribute__(...)
| x.__getattribute__('name') <==> x.name
|
| __getitem__(...)
| x.__getitem__(y) <==> x[y]
|
| __getslice__(...)
| x.__getslice__(i, j) <==> x[i:j]
|
| Use of negative indices is not supported.
|
| __gt__(...)
| x.__gt__(y) <==> x>y
|
| __hash__(...)
| x.__hash__() <==> hash(x)
|
| __iter__(...)
| x.__iter__() <==> iter(x)
|
| __le__(...)
| x.__le__(y) <==> x<=y
|
| __len__(...)
| x.__len__() <==> len(x)
|
| __lt__(...)
| x.__lt__(y) <==> x<y
|
| __mul__(...)
| x.__mul__(n) <==> x*n
|
| __ne__(...)
| x.__ne__(y) <==> x!=y
|
| __rmul__(...)
| x.__rmul__(n) <==> n*x
|
| __sizeof__(...)
| T.__sizeof__() -- size of T in memory, in bytes
|
| count(...)
| T.count(value) -> integer -- return number of occurrences of value
|
| index(...)
| T.index(value, [start, [stop]]) -> integer -- return first index of value.
| Raises ValueError if the value is not present. Mytuple Mytuple
namedtuple
namedtuple实例
# -------------------------------------可命名元组------------------------------------------#
# Mytuple = collections.namedtuple('Mytuple',['x', 'y', 'z'])
# A=Mytuple(x=1,y=2,z=3)
# print(A.x,A.y,A.z) #>>> 1 2 3
# print(A) # >>> Mytuple(x=1, y=2, z=3)
# print(A[0],A[1],A[2]) #>>> 1 2 3
namedtuple
2.5 deque双向队列
class deque(object):
"""
deque([iterable[, maxlen]]) --> deque object Build an ordered collection with optimized access from its endpoints.
"""
def append(self, *args, **kwargs): # real signature unknown
""" Add an element to the right side of the deque. """
pass def appendleft(self, *args, **kwargs): # real signature unknown
""" Add an element to the left side of the deque. """
pass def clear(self, *args, **kwargs): # real signature unknown
""" Remove all elements from the deque. """
pass def count(self, value): # real signature unknown; restored from __doc__
""" D.count(value) -> integer -- return number of occurrences of value """
return 0 def extend(self, *args, **kwargs): # real signature unknown
""" Extend the right side of the deque with elements from the iterable """
pass def extendleft(self, *args, **kwargs): # real signature unknown
""" Extend the left side of the deque with elements from the iterable """
pass def pop(self, *args, **kwargs): # real signature unknown
""" Remove and return the rightmost element. """
pass def popleft(self, *args, **kwargs): # real signature unknown
""" Remove and return the leftmost element. """
pass def remove(self, value): # real signature unknown; restored from __doc__
""" D.remove(value) -- remove first occurrence of value. """
pass def reverse(self): # real signature unknown; restored from __doc__
""" D.reverse() -- reverse *IN PLACE* """
pass def rotate(self, *args, **kwargs): # real signature unknown
""" Rotate the deque n steps to the right (default n=1). If n is negative, rotates left. """
pass def __copy__(self, *args, **kwargs): # real signature unknown
""" Return a shallow copy of a deque. """
pass def __delitem__(self, y): # real signature unknown; restored from __doc__
""" x.__delitem__(y) <==> del x[y] """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __iadd__(self, y): # real signature unknown; restored from __doc__
""" x.__iadd__(y) <==> x+=y """
pass def __init__(self, iterable=(), maxlen=None): # known case of _collections.deque.__init__
"""
deque([iterable[, maxlen]]) --> deque object Build an ordered collection with optimized access from its endpoints.
# (copied from class doc)
"""
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __reversed__(self): # real signature unknown; restored from __doc__
""" D.__reversed__() -- return a reverse iterator over the deque """
pass def __setitem__(self, i, y): # real signature unknown; restored from __doc__
""" x.__setitem__(i, y) <==> x[i]=y """
pass def __sizeof__(self): # real signature unknown; restored from __doc__
""" D.__sizeof__() -- size of D in memory, in bytes """
pass maxlen = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""maximum size of a deque or None if unbounded""" __hash__ = None deque
deque
deque实例
A=collections.deque([1,2,3,4])
print(A) # >>> deque([1, 2, 3, 4])
A.append(5) # 增加一个元组到右侧
print(A)
A.appendleft(0) # 增加一个元素到左侧
print(A)
A.extend([6,7,8]) #右侧扩展一个列表
print(A)
A.extendleft([-1,-2]) # 左侧扩展一个列表
print(A)
B=A.count(1) # 匹配队列中元素出现的次数
print(B)
A.pop()
print(A) # 删除队列中的最后一个元素
A.popleft()
print(A) # 删除队列中第一个元素 从左边开始
A.remove(2)
print(A) # 删除队里中指定的元素
A.reverse()
print(A) #反转队列
A.rotate()
print(A) #将队列中最后N个元素移动至最前
'''
deque([1, 2, 3, 4])
deque([1, 2, 3, 4, 5])
deque([0, 1, 2, 3, 4, 5])
deque([0, 1, 2, 3, 4, 5, 6, 7, 8])
deque([-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
1
deque([-2, -1, 0, 1, 2, 3, 4, 5, 6, 7])
deque([-1, 0, 1, 2, 3, 4, 5, 6, 7])
deque([-1, 0, 1, 3, 4, 5, 6, 7])
deque([7, 6, 5, 4, 3, 1, 0, -1])
deque([-1, 7, 6, 5, 4, 3, 1, 0])
'''
deque实例
2.6 单向队列(先进先出 FIFO )
class Queue:
"""Create a queue object with a given maximum size. If maxsize is <= 0, the queue size is infinite.
"""
def __init__(self, maxsize=0):
self.maxsize = maxsize
self._init(maxsize)
# mutex must be held whenever the queue is mutating. All methods
# that acquire mutex must release it before returning. mutex
# is shared between the three conditions, so acquiring and
# releasing the conditions also acquires and releases mutex.
self.mutex = _threading.Lock()
# Notify not_empty whenever an item is added to the queue; a
# thread waiting to get is notified then.
self.not_empty = _threading.Condition(self.mutex)
# Notify not_full whenever an item is removed from the queue;
# a thread waiting to put is notified then.
self.not_full = _threading.Condition(self.mutex)
# Notify all_tasks_done whenever the number of unfinished tasks
# drops to zero; thread waiting to join() is notified to resume
self.all_tasks_done = _threading.Condition(self.mutex)
self.unfinished_tasks = 0 def task_done(self):
"""Indicate that a formerly enqueued task is complete. Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete. If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue). Raises a ValueError if called more times than there were items
placed in the queue.
"""
self.all_tasks_done.acquire()
try:
unfinished = self.unfinished_tasks - 1
if unfinished <= 0:
if unfinished < 0:
raise ValueError('task_done() called too many times')
self.all_tasks_done.notify_all()
self.unfinished_tasks = unfinished
finally:
self.all_tasks_done.release() def join(self):
"""Blocks until all items in the Queue have been gotten and processed. The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete. When the count of unfinished tasks drops to zero, join() unblocks.
"""
self.all_tasks_done.acquire()
try:
while self.unfinished_tasks:
self.all_tasks_done.wait()
finally:
self.all_tasks_done.release() def qsize(self):
"""Return the approximate size of the queue (not reliable!)."""
self.mutex.acquire()
n = self._qsize()
self.mutex.release()
return n def empty(self):
"""Return True if the queue is empty, False otherwise (not reliable!)."""
self.mutex.acquire()
n = not self._qsize()
self.mutex.release()
return n def full(self):
"""Return True if the queue is full, False otherwise (not reliable!)."""
self.mutex.acquire()
n = 0 < self.maxsize == self._qsize()
self.mutex.release()
return n def put(self, item, block=True, timeout=None):
"""Put an item into the queue. If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until a free slot is available. If 'timeout' is
a non-negative number, it blocks at most 'timeout' seconds and raises
the Full exception if no free slot was available within that time.
Otherwise ('block' is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception ('timeout'
is ignored in that case).
"""
self.not_full.acquire()
try:
if self.maxsize > 0:
if not block:
if self._qsize() == self.maxsize:
raise Full
elif timeout is None:
while self._qsize() == self.maxsize:
self.not_full.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = _time() + timeout
while self._qsize() == self.maxsize:
remaining = endtime - _time()
if remaining <= 0.0:
raise Full
self.not_full.wait(remaining)
self._put(item)
self.unfinished_tasks += 1
self.not_empty.notify()
finally:
self.not_full.release() def put_nowait(self, item):
"""Put an item into the queue without blocking. Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.
"""
return self.put(item, False) def get(self, block=True, timeout=None):
"""Remove and return an item from the queue. If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until an item is available. If 'timeout' is
a non-negative number, it blocks at most 'timeout' seconds and raises
the Empty exception if no item was available within that time.
Otherwise ('block' is false), return an item if one is immediately
available, else raise the Empty exception ('timeout' is ignored
in that case).
"""
self.not_empty.acquire()
try:
if not block:
if not self._qsize():
raise Empty
elif timeout is None:
while not self._qsize():
self.not_empty.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = _time() + timeout
while not self._qsize():
remaining = endtime - _time()
if remaining <= 0.0:
raise Empty
self.not_empty.wait(remaining)
item = self._get()
self.not_full.notify()
return item
finally:
self.not_empty.release() def get_nowait(self):
"""Remove and return an item from the queue without blocking. Only get an item if one is immediately available. Otherwise
raise the Empty exception.
"""
return self.get(False) # Override these methods to implement other queue organizations
# (e.g. stack or priority queue).
# These will only be called with appropriate locks held # Initialize the queue representation
def _init(self, maxsize):
self.queue = deque() def _qsize(self, len=len):
return len(self.queue) # Put a new item in the queue
def _put(self, item):
self.queue.append(item) # Get an item from the queue
def _get(self):
return self.queue.popleft() Queue.Queue
单向队列源码剖析
queue.Queue实例
# -------------------------------------单向队列------------------------------------------#
import queue
B=queue.Queue()
print(B.empty()) #如果队列为空,返回True,反之False
print(B.full()) #如果队列满了,返回True,反之False
B.put('aaaa') #队列里插入数据
B.put('bbbb')
print(B.qsize()) #返回队列里的个数
print(B.get()) #获取队列的第一个元素
print(B.get_nowait()) '''
Queue.qsize() 返回队列的大小
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.full 与 maxsize 大小对应
Queue.get([block[, timeout]]) 获取队列,timeout等待时间
Queue.get_nowait() 相当Queue.get(False)
Queue.put(item) 写入队列,timeout等待时间
Queue.put_nowait(item) 相当Queue.put(item, False)
Queue.task_done() 在完成一项工作之后,Queue.task_done() 函数向任务已经完成的队列发送一个信号
Queue.join() 实际上意味着等到队列为空,再执行别的操作
'''
queue.Queue()
#--------------------------------------------------函数-------------------------------------------#
函数的定义和使用
函数的定义和使用 def 函数名(参数): ...
函数体
...
函数的定义主要有如下要点:
- def:表示函数的关键字
- 函数名:函数的名称,日后根据函数名调用函数
- 函数体:函数中进行一系列的逻辑计算,如:发送邮件、计算出 [11,22,38,888,2]中的最大数等...
- 参数:为函数体提供数据
- 返回值:当函数执行完毕后,可以给调用者返回数据。
参数类型
.普通参数
# ######### 定义函数 ######### # name 叫做函数func的形式参数,简称:形参
def func(name):
print name # ######### 执行函数 #########
# 'chen' 叫做函数func的实际参数,简称:实参
func('chen') 普通参数
普通函数
示例
def mail(user): #定义函数名称mail def定义函数开始 user表示形参(形式参数)
n=123
n+=1
print(user) #这里调用形参
return n #return 定义函数规定一个返回值
f=mail('chen')
f=mail('Python') #这里()内部的就表示用户输入的实参
print(f) # >>> chen Python 124 def show(arg,xxx): #如果指定了2个形参,调用时必须输出两个形参
print(arg,xxx)
show('chen','Python') # 默认参数
def show(a1,a2=27): #a2=27 表示默认参数,默认参数必须指定在形参的最后。如果只指定了1个实参,则执行默认形参
print(a1,a2)
show('chen') #>>> chen 27
普通参数示例
.指定参数
def func(name, age = 18): print "%s:%s" %(name,age) # 指定参数
func('chen', 19)
# 使用默认参数
func('chen') 注:默认参数需要放在参数列表最后 默认参数
指定参数
示例
指定参数
def show(a1,a2):
print(a1,a2)
show(a2='Python',a1='Love') # >>> Love Python 传入列表
def show(arg):
print(arg)
show([1,2,3,4])
指定参数示例
.动态参数
def func(*args): print args # 执行方式一
func(11,33,4,4454,5) # 执行方式二
li = [11,2,2,3,3,4,54]
func(*li) 动态参数一
动态参数1
def func(**kwargs): print args # 执行方式一
func(name='chen',age=18) # 执行方式二
li = {'name':'chen', age:18, 'gender':'male'}
func(**li) 动态参数二
动态参数2
def func(*args, **kwargs): print (args)
print (kwargs)
动态参数3
示例
#动态参数
# def show(*arg): #*表示实参为元祖
# print(arg,type(arg))
# show(1,2,3) # (1, 2, 3) <class 'tuple'> # def show(**args): #**表示实参为字典
# print(args,type(args))
# show(name='chen') # >>>{'name': 'chen'} <class 'dict'> name代表字典的keys,chen代表字典的values # def show(*arg,**args): #约定:形参*必须放在前面**放在后面
# print(arg,type(arg))
# print(args,type(args))
# show(1,2,3,4,name='chen') #约定:实参与形参一直
#>>>(1, 2, 3, 4) <class 'tuple'>
# {'name': 'chen'} <class 'dict
# 注意:如果1,2,3,4为一个列表,name='chen'位一个字典比如a=[1,2,3,4] b={'name':'chen'} 实参传入时必须指定*和**,否则将列表和字典会全部写入到元组
'''
#例:
def show(*arg,**args): #约定:形参*必须放在前面**放在后面
print(arg,type(arg))
print(args,type(args))
a=[1,2,3,4]
b={'name':'chen'}
show(*a,**b)
# (1, 2, 3, 4) <class 'tuple'> {'name': 'chen'} <class 'dict'>
'''
动态参数示例
函数发送邮件示例:
# 函数发送邮件案例
#------------------------函数测试发送邮件------------------------------#
import smtplib
from email.mime.text import MIMEText
from email.utils import formataddr
def mail(user):
ret = True
try:
msg = MIMEText('邮件内容:函数发送邮件测试!', 'plain', 'utf-8')
msg['From'] = formataddr(["武沛齐",'wptawy@126.com'])
msg['To'] = formataddr(["走人",'1585742649@qq.com'])
msg['Subject'] = "主题aaa" server = smtplib.SMTP("smtp.126.com", 25)
server.login("wptawy@126.com", 你的密码")
server.sendmail('wptawy@126.com', [user], msg.as_string())
server.quit()
except Exception:
ret = False
return ret
ret = mail('1585742649@qq.com')
if ret:
print('发送成功')
else:
print('发送失败')
发送邮件示例
try简单案例:
#try案例解释
try:
1/0
print('OK')
except Exception:
print('NO')
# >>> no 如果try里的程序执行正确打印OK 否则执行except Exception里面的内容 NO
try
lambda表达式
学习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即:
# 普通条件语句
if 1 == 1:
name = 'wupeiqi'
else:
name = 'alex' # 三元运算
name = ‘chen' if 1 == 1 else 'jin'
对于简单的函数,也存在一种简便的表示方式,即:lambda表达式
# ###################### 普通函数 ######################
# 定义函数(普通方式)
def func(arg):
return arg + 1 # 执行函数
result = func(123) # ###################### lambda ###################### # 定义函数(lambda表达式)
my_lambda = lambda arg : arg + 1 # 执行函数
result = my_lambda(123)
#lambda表达式
lambda存在意义就是对简单函数的简洁表示
2 func = lambda a: a+1
3 count = func(4)
4 print(count) #>>> 5
Python内置函数
Python内置函数
all() #()里指定一个序列,如果传入的所有的元素都为真,返回True,否则返回False
#何为假 None,"",['',],(),{}
any() #序列中只要有一个为真,返回True
ascii() #传入一个对象时,自动执行int.__repr__() 例如print(ascii(8)) #>>> 8
bin() #转换二进制 例:print(bin(10)) #>>> 0b1010 0b表示二进制
bool() # 判断真假,返回True,False 例:print(bool(0)) >>> False
bytearray() #将字符串转换为字节数组 print(bytearray('晨',encoding='utf-8')) # >>>bytearray(b'\xe6\x99\xa8'),一个汉字占3个字节
callable() #是否可执行
例如:
f=lambda x:x+1
print(callable(f)) #>>> True f后面可以加()代表可执行返回True
print(callable(abs)) # 同理
chr()把数字转换为ascii码 ord() 把ascii码转换为数字
例:
print(chr(88)) #>>> X
print(ord('X')) #>>> 88
compile() #将字符串编译成python代码
complex()复数
delattr() # 反射用
dir() #当前变量所有的key
divmod() #取商和余数,返回元组
enumerate() #将序列加上序号
eval() #计算 print(eval('1+2*10+3-23')) >>> 1
map()做条件判断操作
map() #示例
a=[1,2,3,4,5]
b=map(lambda x:x+100,a) #lambda可替换为函数
c = list(b)
print(c) #>>>[101, 102, 103, 104, 105]
filter() #用来过滤
a=[1,2,3,4,5]
b=filter(lambda x:x>4,a)
print(list(b)) #>>> 5
format() #调用__format__()
frozenset() # 不能增加和修改的集合
globals() #返回所有全局变量
hex() #转换为十六进制 *0x表示16进制*
locals() #局部变量
max() #获取最大值
min() #获取最小值
oct() #八进制 *0o代表八进制*
round()#四舍五入
super()#通过子类执行父类
vars() # 和dir()不同的是返回所有的k,val 为字典
zip() 对应列相加
a=['a','b','c']
b=[1,2,3]
b = zip(a,b)
print(list(b)) #>>>[('a', 1), ('b', 2), ('c', 3)]
操作文件时,一般需要经历如下步骤:
- 打开文件
- 操作文件
一、打开文件
文件句柄 = file('文件路径', '模式')
注:python中打开文件有两种方式,即:open(...) 和 file(...) ,本质上前者在内部会调用后者来进行文件操作,推荐使用 open。
打开文件时,需要指定文件路径和以何等方式打开文件,打开后,即可获取该文件句柄,日后通过此文件句柄对该文件操作。
打开文件的模式有:
- r,只读模式(默认)。
- w,只写模式。【不可读;不存在则创建;存在则删除内容;】
- a,追加模式。【可读; 不存在则创建;存在则只追加内容;】
"+" 表示可以同时读写某个文件
- r+,可读写文件。【可读;可写;可追加】
- w+,写读
- a+,同a
"U"表示在读取时,可以将 \r \n \r\n自动转换成 \n (与 r 或 r+ 模式同使用)
- rU
- r+U
"b"表示处理二进制文件(如:FTP发送上传ISO镜像文件,linux可忽略,windows处理二进制文件时需标注)
- rb
- wb
- ab
二、操作操作
class file(object): def close(self): # real signature unknown; restored from __doc__
关闭文件
"""
close() -> None or (perhaps) an integer. Close the file. Sets data attribute .closed to True. A closed file cannot be used for
further I/O operations. close() may be called more than once without
error. Some kinds of file objects (for example, opened by popen())
may return an exit status upon closing.
""" def fileno(self): # real signature unknown; restored from __doc__
文件描述符
"""
fileno() -> integer "file descriptor". This is needed for lower-level file interfaces, such os.read().
"""
return 0 def flush(self): # real signature unknown; restored from __doc__
刷新文件内部缓冲区
""" flush() -> None. Flush the internal I/O buffer. """
pass def isatty(self): # real signature unknown; restored from __doc__
判断文件是否是同意tty设备
""" isatty() -> true or false. True if the file is connected to a tty device. """
return False def next(self): # real signature unknown; restored from __doc__
获取下一行数据,不存在,则报错
""" x.next() -> the next value, or raise StopIteration """
pass def read(self, size=None): # real signature unknown; restored from __doc__
读取指定字节数据
"""
read([size]) -> read at most size bytes, returned as a string. If the size argument is negative or omitted, read until EOF is reached.
Notice that when in non-blocking mode, less data than what was requested
may be returned, even if no size parameter was given.
"""
pass def readinto(self): # real signature unknown; restored from __doc__
读取到缓冲区,不要用,将被遗弃
""" readinto() -> Undocumented. Don't use this; it may go away. """
pass def readline(self, size=None): # real signature unknown; restored from __doc__
仅读取一行数据
"""
readline([size]) -> next line from the file, as a string. Retain newline. A non-negative size argument limits the maximum
number of bytes to return (an incomplete line may be returned then).
Return an empty string at EOF.
"""
pass def readlines(self, size=None): # real signature unknown; restored from __doc__
读取所有数据,并根据换行保存值列表
"""
readlines([size]) -> list of strings, each a line from the file. Call readline() repeatedly and return a list of the lines so read.
The optional size argument, if given, is an approximate bound on the
total number of bytes in the lines returned.
"""
return [] def seek(self, offset, whence=None): # real signature unknown; restored from __doc__
指定文件中指针位置
"""
seek(offset[, whence]) -> None. Move to new file position. Argument offset is a byte count. Optional argument whence defaults to
0 (offset from start of file, offset should be >= 0); other values are 1
(move relative to current position, positive or negative), and 2 (move
relative to end of file, usually negative, although many platforms allow
seeking beyond the end of a file). If the file is opened in text mode,
only offsets returned by tell() are legal. Use of other offsets causes
undefined behavior.
Note that not all file objects are seekable.
"""
pass def tell(self): # real signature unknown; restored from __doc__
获取当前指针位置
""" tell() -> current file position, an integer (may be a long integer). """
pass def truncate(self, size=None): # real signature unknown; restored from __doc__
截断数据,仅保留指定之前数据
"""
truncate([size]) -> None. Truncate the file to at most size bytes. Size defaults to the current file position, as returned by tell().
"""
pass def write(self, p_str): # real signature unknown; restored from __doc__
写内容
"""
write(str) -> None. Write string str to file. Note that due to buffering, flush() or close() may be needed before
the file on disk reflects the data written.
"""
pass def writelines(self, sequence_of_strings): # real signature unknown; restored from __doc__
将一个字符串列表写入文件
"""
writelines(sequence_of_strings) -> None. Write the strings to the file. Note that newlines are not added. The sequence can be any iterable object
producing strings. This is equivalent to calling write() for each string.
"""
pass def xreadlines(self): # real signature unknown; restored from __doc__
可用于逐行读取文件,非全部
"""
xreadlines() -> returns self. For backward compatibility. File objects now include the performance
optimizations previously implemented in the xreadlines module.
"""
pass
文件操作源码
三、with
为了避免打开文件后忘记关闭,可以通过管理上下文,即:
with open('log','r') as f: ...
如此方式,当with代码块执行完毕时,内部会自动关闭并释放文件资源。
在Python 2.7 后,with又支持同时对多个文件的上下文进行管理,即:
with open('log1') as obj1, open('log2') as obj2:
pass