毒瘤出题人卡精度……
思路
看到森林里加边删边,容易想到LCT。
然而LCT上似乎很难实现往一条链里代一个数进去求和,怎么办呢?
善良的出题人在下方给了提示:把奇怪的函数泰勒展开搞成多项式,就很好维护了。
注意到数都很小,精度问题不会太大(那你还被卡),可以直接在\(0\)处泰勒展开更为方便。
然后就做完啦~
代码
要开O2才能过QwQ
#include<bits/stdc++.h>
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define sz 100101
typedef long long ll;
template<typename T>
inline void read(T& t)
{
t=0;char f=0,ch=getchar();
double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.')
{
ch=getchar();
while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();
}
t=(f?-t:t);
}
template<typename T,typename... Args>
inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.txt","r",stdin);
#endif
}
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
typedef long double db;
#define B 20
namespace LCT
{
int fa[sz],ch[sz][2];
db sum[sz][B+5],a[sz][B+5];
bool tag[sz];
#define ls ch[x][0]
#define rs ch[x][1]
#define I inline
I bool get(int x){return ch[fa[x]][1]==x;}
I bool nroot(int x){return ch[fa[x]][0]==x||ch[fa[x]][1]==x;}
I void rev(int x){tag[x]^=1;swap(ls,rs);}
I void pushup(int x){rep(i,0,B) sum[x][i]=sum[ls][i]+sum[rs][i]+a[x][i];}
I void pushdown(int x){ if (!x||!tag[x]) return; rev(ls); rev(rs); tag[x]=0; }
I void rotate(int x)
{
int y=fa[x],z=fa[y],k=get(x),w=ch[x][!k];
if (nroot(y)) ch[z][get(y)]=x;ch[x][!k]=y;ch[y][k]=w;
if (w) fa[w]=y;fa[y]=x;fa[x]=z;
pushup(y);pushup(x);
}
void Pushdown(int x){if (nroot(x)) Pushdown(fa[x]);pushdown(x);}
I void splay(int x)
{
Pushdown(x);
while (nroot(x))
{
int y=fa[x];
if (nroot(y)) rotate(get(x)==get(y)?y:x);
rotate(x);
}
}
void access(int x){for (int y=0;x;x=fa[y=x]) splay(x),rs=y,pushup(x);}
void makeroot(int x){access(x);splay(x);rev(x);}
int findroot(int x){access(x);splay(x);while (ls) x=ls;return x;}
void split(int x,int y){makeroot(x);access(y);splay(y);}
void link(int x,int y){makeroot(x);access(y);splay(y);fa[x]=y;}
void cut(int x,int y){split(x,y);fa[x]=ch[y][0]=0;pushup(y);}
#undef ls
#undef rs
#undef I
}
db fac[B+5];
void init(){fac[0]=1;rep(i,1,B) fac[i]=fac[i-1]*i;}
void calc(int x,int f,db a,db b)
{
#define A LCT::a[x]
if (f==1)
{
db Sin=sin(b),Cos=cos(b),t=1;
rep(n,0,B)
{
db ret=t;
if (n&1) ret*=Cos; else ret*=Sin;
if (n%4>=2) ret=-ret;
A[n]=ret;
t*=a;
}
}
if (f==2)
{
db t=exp(b);
rep(i,0,B) A[i]=t,t*=a;
}
if (f==3)
{
A[0]=b;A[1]=a;
rep(i,2,B) A[i]=0;
}
LCT::pushup(x);
#undef A
}
int n,m;
int main()
{
file();
init();
string type;
int f,x,y;db a,b;
read(n,m);cin>>type;
rep(i,1,n) read(f,a,b),calc(i,f,a,b);
while (m--)
{
cin>>type;read(x,y);
if (type[0]=='a') LCT::link(x+1,y+1);
else if (type[0]=='d') LCT::cut(x+1,y+1);
else if (type[0]=='m') ++x,f=y,read(a,b),LCT::makeroot(x),calc(x,f,a,b);
else
{
++x,++y;read(a);
LCT::makeroot(x);if (LCT::findroot(y)!=x) { puts("unreachable"); continue; }
LCT::split(x,y);
db ans=LCT::sum[y][0],t=a;
rep(i,1,B) ans+=LCT::sum[y][i]*t/fac[i],t*=a;
printf("%.10Lf\n",ans);
}
}
}