若有1克、2克、3克、4克的砝码各一 枚,能称出哪几种重量?各有几种可能方案?
如何解决这个问题呢?考虑构造母函数。
如果用x的指数表示称出的重量,则:
1个1克的砝码可以用函数1+x表示,
1个2克的砝码可以用函数1+x2表示,
1个3克的砝码可以用函数1+x3表示,
1个4克的砝码可以用函数1+x4表示,
(1+x)(1+x2)(1+x3)(1+x4)=(1+x+x2+x3)(1+x3+x4+x7)=1+x+x2+2x3+2x4+2x5+2x6+2x7+x8+x9+x10
从上面的函数知道:可称出从1克到10克,系数便是方案数。
例如右端有2x5 项,即称出5克的方案有2:5=3+2=4+1;同样,6=1+2+3=4+2;10=1+2+3+4。
故称出6克的方案有2,称出10克的方案有1