BIBD&SBIBD的矩阵题

证明不存在 \(01\) 方阵 \(A\) 使得:

\(A^TA=\begin{pmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{pmatrix}_{22\times22}\)

证明:

若 \(\exists A\) 满足上述条件。

\(\because A^TA=\begin{pmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{pmatrix}_{22\times22}\)

\(\begin{aligned} \therefore |A^TA| & = \begin{vmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{vmatrix}_{22\times22} \\ & = \begin{vmatrix}7&2&2&\dots &2\\-5&5&0&\dots&0\\-5&0&5&\dots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ -5&0&0&\dots&5\end{vmatrix}_{22\times22} \\ & = \begin{vmatrix}7+21\times2&2&2&\dots &2\\0&5&0&\dots&0\\0&0&5&\dots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\dots&5\end{vmatrix}_{22\times22} \\ & = 5^{22-1}( 7+21\times 2 ) \\ &= 7^2\times 5^{21}\end{aligned}\)

\(\because |A|^2=|A^T||A|=|A^TA|\)

\(\therefore |A|=\pm\sqrt{|A^TA|}=\pm7\times5^{10}\sqrt{5}\)

\(\because A\) 为 \(01\) 矩阵。

\(\therefore |A|\in \mathbb{Z}\)

\(\because \pm7\times5^{10}\sqrt{5}\notin \mathbb{Z}\)

\(\therefore\) 假设不成立,即 \(\nexists A\) 满足上述条件,原命题得证。

可以推出一个结论:

不存在 \(01\) 方阵 \(A\) 使得:

$A^TA=\begin{pmatrix}r&\lambda&\dots &\lambda\\lambda&r&\dots&\lambda\ \vdots&\vdots&\ddots&\vdots\ \lambda&\lambda&\dots&r\end{pmatrix}_{v\times v} $

上一篇:线代口胡


下一篇:Lindström–Gessel–Viennot引理及其应用