DTFT变换的性质
线性性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则
\[
\begin{aligned}ax[n]+by[n]&\xrightarrow{DTFT}\sum_{n=-\infty}^{\infty}(ax[n]+by[n])e^{-jwn} \\
&=a\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}+b\sum_{n=-\infty}^{\infty}y[n]e^{-jwn}\\
&=aX(e^{jw})+bY(e^{jw})
\end{aligned}
\]
时移性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
则\(x[n-n_0]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}x[n-n_0]e^{-jwn}\xrightarrow{m=n-n_0}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}e^{-jwn_0}=e^{-jwn_0}X(e^{jw})
\]
频移性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
则\(e^{jw_0n}x[n]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}e^{jw_0n}x[n]e^{-jwn}=\sum_{n=-\infty}^{\infty}x[n]e^{-j(w-w_0)n}=X(e^{j(w-w_0)})
\]
时域反转
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
则\(x[-n]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}x[-n]e^{-jwn}\xrightarrow{m=-n}\sum_{m=-\infty}^{\infty}x[m]e^{-(-jw)m}=X(e^{-jw})
\]
时域微分
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
由于
\[
x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})e^{jwn}dw
\]
两边同时对\(n\)进行微分运算
\[
\frac{dx[n]}{dn}=\frac{1}{2\pi}\int_{-\pi}^{\pi}jwX(e^{jw})e^{jwn}dw
\]
所以
\[
\frac{dx[n]}{dn}\xrightarrow{DTFT}jwX(e^{jw})
\]
频域微分
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
由
\[
X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}
\]
两边同时对\(w\)进行微分
\[
\frac{dX(e^{jw})}{dw}=\sum_{n=-\infty}^{\infty}-jnx[n]e^{-jwn}
\]
\[ \Rightarrow \sum_{n=-\infty}^{\infty}nx[n]e^{-jwn}= j\frac{dX(e^{jw})}{dw} \]
所以
\[
nx[n]\xrightarrow{DTFT}j\frac{dX(e^{jw})}{dw}
\]
卷积性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则二者卷积的\(DTFT\)为
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}(x[n]*y[n])e^{-jwn}&=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}x[m]y[n-m]e^{-jwn} \\
&=\sum_{m=-\infty}^{\infty}x[m]\sum_{n=-\infty}^{\infty}y[n-m]e^{-jwn} \\
&\xrightarrow{k=n-m}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}\sum_{k=-\infty}^{\infty}y[k]e^{-jwk} \\
&=X(e^{jw})Y(e^{jw})
\end{aligned}
\]
调制定理
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则\(x[n]y[n]\)的\(DTFT\)为
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}(x[n]y[n])e^{-jwn} &=\sum_{n=-\infty}^{\infty}x[n]\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})e^{j\theta n}d\theta e^{-jwn} \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sum_{n=-\infty}^{\infty}x[n]^{-j(w-\theta)n}Y(e^{j\theta})d\theta \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})X(e^{j(w-\theta)})d\theta
\end{aligned}
\]
Parseval定理
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}x[n]y^{*}[n]&=\sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{jw})e^{jwn}dw)^{*} \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}x[n]e^{-jwn}Y^{*}(e^{jw})dw \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw
\end{aligned}
\]
得到Parseval
定理
\[
\sum_{n=-\infty}^{\infty}x[n]y^{*}[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw
\]
如果\(y[n]=x[n]\),那么
\[
\sum_{n=-\infty}^{\infty}\vert x[n] \vert^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}\vert X(e^{jw})\vert^2dw
\]
即序列\(x[n]\)的能量,可以通过对\(\vert X(e^{jw})\vert^2\)的积分求得,所以称\(\vert X(e^{jw})\vert^2\)为序列\(x[n]\)的能量谱密度。