UOJ#195. 【ZJOI2016】大♂森林 LCT

原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ195.html

题解

  首先询问都可以放到最后处理。

  对于操作,我们把它差分一下离线下来。

  现在的问题就是从第一棵树到第 n 棵树扫一遍,并不断维护树的形态。

  容易感受到这棵树会有删节点之类的操作,所以自然想到 LCT 。

  但是要涉及一个节点的一些子节点换父亲的时候LCT就GG了。

  解决这个问题的办法是建立虚点。虚点权值为 0 ,实点权值为 1,于是我们要维护链上点权和。

  建虚点的规则是:

  对于每一个操作 1 都建立一个虚点。即:将区间 [L,R] 的生长节点换成 x 的时候,建一个虚点,这个虚点的父亲 在 [L,R] 中是 x ,否则是上一个生长节点对应的虚点。

  对于每一个操作 2 ,直接把他连到上一个生长节点所对应的虚点上去就好了。

  我们发现我们维护的LCT要获取父亲信息,所以不方便换根。那就不换了!

  那么怎么求两点距离呢?

  dis(x,y) = depth[x]+depth[y] - 2*depth[LCA(x,y)] 

  LCT怎么求LCA 呢?见代码中的函数 Ask()

  时间复杂度 $O(n\log n)$ 。

代码

#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
using namespace std;
typedef long long LL;
LL read(){
	LL x=0,f=0;
	char ch=getchar();
	while (!isdigit(ch))
		f|=ch=='-',ch=getchar();
	while (isdigit(ch))
		x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
	return f?-x:x;
}
const int N=200005*2;
int n,m,oc=0;
struct Opt{
	int t,lev,x,y;
	Opt(){}
	Opt(int _t,int _lev,int _x,int _y){
		t=_t,lev=_lev,x=_x,y=_y;
	}
}o[N*3];
bool cmpo(Opt a,Opt b){
	return a.t!=b.t?a.t<b.t:a.lev<b.lev;
}
int lv[N],rv[N],id[N],ans[N];
namespace lct{
	int size[N],val[N],fa[N],son[N][2];
	int n;
	void pushup(int x){
		size[x]=size[son[x][0]]+val[x]+size[son[x][1]];
	}
	int Add(int v){
		val[++n]=v,pushup(n);
		return n;
	}
	void init(){
		n=0;
		id[1]=Add(1);
	}
	int isroot(int x){
		return son[fa[x]][0]!=x&&son[fa[x]][1]!=x;
	}
	int wson(int x){
		return son[fa[x]][1]==x;
	}
	void rotate(int x){
		if (isroot(x))
			return;
		int y=fa[x],z=fa[y],L=wson(x),R=L^1;
		if (!isroot(y))
			son[z][wson(y)]=x;
		fa[x]=z,fa[y]=x,fa[son[x][R]]=y;
		son[y][L]=son[x][R],son[x][R]=y;
		pushup(y),pushup(x);
	}
	void splay(int x){
		for (int y=fa[x];!isroot(x);rotate(x),y=fa[x])
			if (!isroot(y))
				rotate(wson(x)==wson(y)?y:x);
	}
	int access(int x){
		int t;
		for (t=0;x;t=x,x=fa[x])
			splay(x),son[x][1]=t,pushup(x);
		return t;
	}
	void refather(int x,int y){
		access(x),splay(x),son[x][0]=fa[son[x][0]]=0,pushup(x);
		fa[x]=y;
	}
	int Ask(int x,int y){
		int ans=0;
		access(x),splay(x),ans=size[x];
		int z=access(y);
		splay(y),ans+=size[y];
		access(z),splay(z),ans-=size[z]*2;
		return ans;
	}
}
int main(){
	n=read(),m=read();
	lct::init();
	lv[1]=1,rv[1]=n;
	lct::refather(lct::Add(0),1);
	int pre=2,cnt=1,q=0;
	for (int i=1;i<=m;i++){
		int type=read();
		if (type==0){
			int L=read(),R=read();
			cnt++,lv[cnt]=L,rv[cnt]=R;
			o[++oc]=Opt(1,i,id[cnt]=lct::Add(1),pre);
		}
		else if (type==1){
			int L=read(),R=read(),x=read();
			L=max(L,lv[x]),R=min(R,rv[x]);
			if (L<=R){
				int now=lct::Add(0);
				if (L>1)
					lct::refather(now,pre);
				o[++oc]=Opt(L,i,now,id[x]);
				o[++oc]=Opt(R+1,i,now,pre);
				pre=now;
			}
		}
		else {
			int k=read(),x=read(),y=read();
			o[++oc]=Opt(k,(++q)+m,id[x],id[y]);
		}
	}
	sort(o+1,o+oc+1,cmpo);
	for (int i=1,j=1;i<=n;i++){
		while (j<=oc&&o[j].t<=i){
			int k=o[j].lev,x=o[j].x,y=o[j].y;
			if (k<=m)
				lct::refather(x,y);
			else
				ans[k-m]=lct::Ask(x,y);
			j++;
		}
	}
	for (int i=1;i<=q;i++)
		printf("%d\n",ans[i]);
	return 0;
}

  

上一篇:跟大神一起15分钟制作一个属于自己的Linux操作系统!


下一篇:Mysql的JSON与SequoiaDB的比较