(2017浙江省数学竞赛)
设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$
证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列.
分析:若$a_1\in Q$由$|a_{n+1}-2a_n|=2$知道$a_n\in Q$.
设$a_n=\dfrac{q}{p},(p,q)=1$则$a_{n+1}=2a_n\pm2=\dfrac{2q\pm2p}{p}$故$a_n,a_{n+1}$ 在不约分的情况下分母相同.
设$a_1=\dfrac{b_1}{p},(b_1,p)=1$则$a_n=\dfrac{b_n}{p},b_n\in Z$,由已知$|a_n|\le 2$故$-2|p|\le b_n\le 2|p|$,故$a_n$的个数至多$4|p|+1$个,故存在整数$k<l$使得$a_k=a_l$.
故$\{a_n\}$从第$k$项起是周期数列,周期为$T=l-k$
注:这里主要考察一个周期数列的定理:
值域是有限数集的递推数列从某项起是周期数列.
证明:设$a_{n+r}=f(a_{n+r-1},a_{n+r-2},\cdots,a_n),n\in N^*$ 且$\{a_n\}$的值域为$D=\{b_1,b_2,\cdots,b_M\}$
构造数组$(a_1,a_2,\cdots,a_r),(a_2,a_3,\cdots,a_{r+1}),\cdots,(a_n,a_{n+1},\cdots,a_{n+r-1}),\cdots$
显然这些数组至多$M^r$个,由抽屉原理,$M^r+1$个中至少有两个是相等的,
不妨设$(a_N,a_{N+1},\cdots,a_{N+r-1})=(a_{N+T},a_{N+1+T},\cdots,a_{N+r-1+T})$,
从而$a_{N+k+T}=a_{N+k},k=0,1,2,\cdots r-1$.
下面用数学归纳法证明:$n\ge N$时$a_{n+T}=a_n$恒成立
(1)当$n=N,N+1,\cdots N+r-1$时,由上述论述$a_n=a_{n+T}$成立
(2)假设当$n\le k(k\ge N+r-1)$时$a_{n+T}=a_n$成立,
那么$n=k+1$时,$a_{n+1+T}=f(a_{n+T},a_{n-1+T},\cdots,a_{n-r+1+T})=f(a_n,a_{n-1},\cdots,a_{n+r-1})=a_{n+1}$
综上由(1)(2)知对任意$n\ge N,a_{n+T}=a_n$成立.