关于其中的resize方法如下: final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
//原数组长度大于等于最大容量,则将阈值调成int类型最大值
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//貌似认为此种情况不太会出现
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
//loHead用户存储低位(位置不变)key的链头,loTail用于指向链位位置。
Node<K,V> loHead = null, loTail = null;
//hiHead用户存储即将存储在高位的key的链头,hiTail用于指向链尾位置。
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//与原数组长度相与后,得到的结果为0的,意味着在新数组中的位置是不变的,因此,将其组成一个链条
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {//对于非0的key,其在新数组中的位置是需要更新的,需要存储在新增的数组中的一个新的位置,将其形成一个链条。
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;//将位置加上原数组长度,即为新的位置信息。
}
}
}
}
}
return newTab;
}
根据上边代码的分析,发现其在多并发的情况下,似乎并不会发生之前版本中形成死锁的情况,其可以保持数据位置的不变性。