@本文来源于公众号:csdn2299,喜欢可以关注公众号 程序员学府
本文实例讲述了Python基于递归算法实现的汉诺塔与Fibonacci数列。分享给大家供大家参考,具体如下:
这里我们通过2个例子,学习python中递归的使用。
- 找出Fibonacci数列中,下标为 n 的数(下标从0计数)
Fibonacci数列的形式是这样的:0,1,1,2,3,5,8,13……
① 使用while循环,python2代码如下:
def fib(n):
a,b=0,1
count=0
while count<n:
a,b=b,a+b
count=count+1
print a
运行结果如下:
>>> fib(0)
0
>>> fib(1)
1
>>> fib(2)
1
>>> fib(3)
2
>>> fib(4)
3
>>> fib(5)
5
② 使用递归(递归必须要有边界条件),python2代码如下:
def fib(n):
if n==0 or n==1:#递归的边界条件
return n
else:
return fib(n-1)+fib(n-2)
运行结果如下:
>>> fib(0)
0
>>> fib(1)
1
>>> fib(2)
1
>>> fib(3)
2
>>> fib(4)
3
>>> fib(5)
5
递归是最能表现计算思维的算法之一,我们以f(4)为例,看一下递归的执行过程:
同一程序,使用递归虽然程序简洁,但递归的执行效率要比循环低,系统的资源消耗比循环大。因为递归是一层一层地往里面调用,结束后又一层一层地返回,所以递归的执行效率并不高。那为什么还要使用递归呢?因为有一些问题,我们找不到非常明显的循环方案,但容易找到明显的递归方案。比如说著名的汉诺塔问题。
- 汉诺塔
下图是一个简化版的汉诺塔游戏,只有4个盘子:
汉诺塔游戏规则如下:
python2代码如下:
def hanoi(a,b,c,n):
if n==1:#递归结束条件
print a,'->',c
else:
hanoi(a,c,b,n-1)
print a,'->',c
hanoi(b,a,c,n-1)
运行结果:
>>> hanoi('A','B','C',1)
A -> C
>>> hanoi('A','B','C',2)
A -> B
A -> C
B -> C
>>> hanoi('A','B','C',3)
A -> C
A -> B
C -> B
A -> C
B -> A
B -> C
A -> C
非常感谢你的阅读
大学的时候选择了自学python,工作了发现吃了计算机基础不好的亏,学历不行这是
没办法的事,只能后天弥补,于是在编码之外开启了自己的逆袭之路,不断的学习python核心知识,深入的研习计算机基础知识,整理好了,如果你也不甘平庸,那就与我一起在编码之外,不断成长吧!
其实这里不仅有技术,更有那些技术之外的东西,比如,如何做一个精致的程序员,而不是“屌丝”,程序员本身就是高贵的一种存在啊,难道不是吗?[点击加入]想做你自己想成为高尚人,加油!