机器学习 - 算法示例 - Xgboost

安装

 能直接安装就再好不过

pip install xgboost

 如果不能就下载之后本地安装

安装包下载地址 这里 想要啥包都有

机器学习 - 算法示例 - Xgboost

数据集

pima-indians-diabetes.csv 文件

机器学习 - 算法示例 - Xgboost

调查印度糖尿病人的一些数据,  最终的预测结果是是否患病

# 1. Number of times pregnant
# 2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test
# 3. Diastolic blood pressure (mm Hg)
# 4. Triceps skin fold thickness (mm)
# 5. 2-Hour serum insulin (mu U/ml)
# 6. Body mass index (weight in kg/(height in m)^2)
# 7. Diabetes pedigree function
# 8. Age (years)
# 9. Class variable (0 or 1)

共有 8 个特征变量, 以及 1 个分类标签

Xgboost 使用

基础使用框架

from numpy import loadtxt
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 下载数据集
datasets = loadtxt('pima-indians-diabetes.csv', delimiter=',')

# 切分 特征 标签
X = datasets[:,0:8]
Y = datasets[:,8]

# 切分 训练集 测试集
seed = 7
test_size = 0.33
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=seed)

# 模型创建 训练
model = XGBClassifier()
model.fit(X_train, y_train)

# 预测模型
y_pred = model.predict(X_test)
predictions = [round(i) for i in y_pred]

# 精度计算
accuracy = accuracy_score(y_test, predictions)
print("Accuracy: %.2f%%" %(accuracy * 100) )
Accuracy: 77.95%

中间过程展示

Xgboost 的原理是在上一棵树的基础上通过添加树从而实现模型的提升的

如果希望看到中间的升级过程可以进行如下的操作

from numpy import loadtxt
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 下载数据集
datasets = loadtxt('pima-indians-diabetes.csv', delimiter=',')

# 切分 特征 标签
X = datasets[:,0:8]
Y = datasets[:,8]

# 切分 训练集 测试集
seed = 7
test_size = 0.33
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=seed)

# 模型创建 训练
model = XGBClassifier()
eval_set = [(X_test, y_test)]
model.fit(X_train, y_train,  # 传入的训练数据
          early_stopping_rounds=10,  # 当多少次的 lost值不在下降就停止模型 
          eval_metric='logloss',   # lost 评估标准
          eval_set=eval_set,   # 构造一个测试集, 没加入一个就进行一次测试
          verbose=True  # 是否展示出中间的详细数据打印
         )

# 预测模型
y_pred = model.predict(X_test)
predictions = [round(i) for i in y_pred]

# 精度计算
accuracy = accuracy_score(y_test, predictions)
print("Accuracy: %.2f%%" %(accuracy * 100) )

打印的过程中会体现出 lost 值的变化过程

机器学习 - 算法示例 - Xgboost
[0]    validation_0-logloss:0.660186
Will train until validation_0-logloss hasn't improved in 10 rounds.
[1]    validation_0-logloss:0.634854
[2]    validation_0-logloss:0.61224
[3]    validation_0-logloss:0.593118
[4]    validation_0-logloss:0.578303
[5]    validation_0-logloss:0.564942
[6]    validation_0-logloss:0.555113
[7]    validation_0-logloss:0.54499
[8]    validation_0-logloss:0.539151
[9]    validation_0-logloss:0.531819
[10]    validation_0-logloss:0.526065
[11]    validation_0-logloss:0.519769
[12]    validation_0-logloss:0.514979
[13]    validation_0-logloss:0.50927
[14]    validation_0-logloss:0.506086
[15]    validation_0-logloss:0.503565
[16]    validation_0-logloss:0.503591
[17]    validation_0-logloss:0.500805
[18]    validation_0-logloss:0.497605
[19]    validation_0-logloss:0.495328
[20]    validation_0-logloss:0.494777
[21]    validation_0-logloss:0.494274
[22]    validation_0-logloss:0.493333
[23]    validation_0-logloss:0.492211
[24]    validation_0-logloss:0.491936
[25]    validation_0-logloss:0.490578
[26]    validation_0-logloss:0.490895
[27]    validation_0-logloss:0.490646
[28]    validation_0-logloss:0.491911
[29]    validation_0-logloss:0.491407
[30]    validation_0-logloss:0.488828
[31]    validation_0-logloss:0.487867
[32]    validation_0-logloss:0.487297
[33]    validation_0-logloss:0.487562
[34]    validation_0-logloss:0.487789
[35]    validation_0-logloss:0.487962
[36]    validation_0-logloss:0.488218
[37]    validation_0-logloss:0.489582
[38]    validation_0-logloss:0.489334
[39]    validation_0-logloss:0.490968
[40]    validation_0-logloss:0.48978
[41]    validation_0-logloss:0.490704
[42]    validation_0-logloss:0.492369
Stopping. Best iteration:
[32]    validation_0-logloss:0.487297

Accuracy: 77.56%
详细打印

特征重要性展示

from numpy import loadtxt
from xgboost import XGBClassifier
from xgboost import plot_importance 
from matplotlib import pyplot


# 下载数据集
datasets = loadtxt('pima-indians-diabetes.csv', delimiter=',')

# 切分 特征 标签
X = datasets[:,0:8]
Y = datasets[:,8]

# 模型创建 训练
model = XGBClassifier()
model.fit(X, Y)

# 展示特征重要程度
plot_importance(model)
pyplot.show()

机器学习 - 算法示例 - Xgboost

参数调节

Xgboost 有很多的参数可以调节

常见参数

学习率 

learning rate  一般设置在  0.1 以下

tree 相关参数 

max_depth  最大深度

min_child_weight  最小叶子权重

subsample  随机选择比例

colsample_bytree  速记特征比例

gamma  损失率相关的一个参数

正则化参数

lambda

alpha

其他参数示例

更详细的的参数可以参考官方文档 

xgb1 = XGBClassifier(
    learning_rate= 0.1,
    n_estimators=1000,
    max_depth=5,
    min_child_weight=1,
    gamma=0,
    subsample=0.8,
    colsample_bytree=0.8,
    objective='binary:logistic', # 指定出是用什么损失函数, 一阶导还是二阶导
    nthread=4, #
    scale_pos_weight=1,
    seed=27 # 随机种子
)

参数选择示例

from numpy import loadtxt
from xgboost import XGBClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedKFold

# 下载数据集
datasets = loadtxt('pima-indians-diabetes.csv', delimiter=',')

# 切分 特征 标签
X = datasets[:,0:8]
Y = datasets[:,8]

# 模型创建 训练
model = XGBClassifier()

# 学习率备选数据
learning_rate = [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3]
param_grid = dict(learning_rate=learning_rate) # 格式要求转换为字典格式

# 交叉验证
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=7)

# 训练模型最佳学习率选择
grid_serarch = GridSearchCV(model, 
                            param_grid, 
                            scoring='neg_log_loss', 
                            n_jobs=-1,  # 当前所有 cpu 都跑这个事
                            cv=kfold)
grid_serarch = grid_serarch.fit(X, Y)

# 打印结果
print("Best: %f using %s" % (grid_serarch.best_score_, grid_serarch.best_params_))
means = grid_serarch.cv_results_['mean_test_score']
params = grid_serarch.cv_results_['params']

for mean, param in zip(means, params):
    print("%f with: %r" % (mean, param))

打印结果

Best: -0.483304 using {'learning_rate': 0.1}
-0.689811 with: {'learning_rate': 0.0001}
-0.661827 with: {'learning_rate': 0.001}
-0.531155 with: {'learning_rate': 0.01}
-0.483304 with: {'learning_rate': 0.1}
-0.515642 with: {'learning_rate': 0.2}
-0.554158 with: {'learning_rate': 0.3}

 

 

 

上一篇:GBDT与XGBoost算法


下一篇:XGBoost算法分析与案例调参实例