本文重点解析XGBoost算法框架的原理,希望通过本文能够洞悉XGBoost核心算法的来龙去脉。对于XGBoost算法,最先想到的是Boosting算法。Boosting提升算法是一种有效且被广泛使用的模型训练算法,XGBoost也是基于Boosting来实现。Boosting算法思想是对弱分类器基础上不断改进提升,并将这些分类器集成在一起,形成一个强分类器。简而言之,XGBoost算法可以说是一种集成式提升算法,是将许多基础模型集成在一起,形成一个很强的模型。这里的基础模型可以是分类与回归决策树CART(Classification and Regression Trees),也可以是线性模型。如果基础模型是CART树(如图1所示),比如第1颗决策树tree1预测左下角男孩的值为+2,对于第1颗决策树遗留下来的剩余部分,使用第2颗决策树预测值为+0.9,则对男孩的总预测值为2+0.9=2.9。
Boost
2024-03-23 11:55:28