bzoj1661[Usaco2006 Nov]Big Square 巨大正方形
题意:
n*n的图中有一些J点,一些B点和一些空白点,问在空白点添加一个J点所能得到的有4个J点组成最大正方形面积。n≤100。
题解:
枚举两个点,然后根据这两个点组成的边尝试在4个上下两个方向组成四边形。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#define inc(i,j,k) for(int i=j;i<=k;i++)
#define maxn 110
using namespace std; char graph[maxn][maxn]; int n,ans;
int main(){
scanf("%d",&n); inc(i,,n)scanf("%s",graph[i]+);
inc(i,,n)inc(j,,n)if(graph[i][j]=='J'){
inc(k,i+,n){
inc(l,,j){
int cnt=;
if(graph[k][l]=='B')continue; if(graph[k][l]=='J')cnt++;
int x=l-j,y=k-i;
if(k-x>n||l+y>n||graph[k-x][l+y]=='B')goto jump1; if(graph[k-x][l+y]=='J')cnt++;
if(i-x>n||j+y>n||graph[i-x][j+y]=='B')goto jump1; if(graph[i-x][j+y]=='J')cnt++;
if(cnt>=)ans=max(ans,(k-i)*(k-i)+(j-l)*(j-l));
jump1:;
if(k+x<||l-y<||graph[k+x][l-y]=='B')goto jump2; if(graph[k+x][l-y]=='J')cnt++;
if(i+x<||j-y<||graph[i+x][j-y]=='B')goto jump2; if(graph[i+x][j-y]=='J')cnt++;
if(cnt>=)ans=max(ans,(k-i)*(k-i)+(j-l)*(j-l));
jump2:;
}
inc(l,j+,n){
int cnt=;
if(graph[k][l]=='B')continue; if(graph[k][l]=='J')cnt++;
int x=l-j,y=k-i;
if(k-x<||l+y>n||graph[k-x][l+y]=='B')goto jump3; if(graph[k-x][l+y]=='J')cnt++;
if(i-x<||j+y>n||graph[i-x][j+y]=='B')goto jump3; if(graph[i-x][j+y]=='J')cnt++;
if(cnt>=)ans=max(ans,(k-i)*(k-i)+(j-l)*(j-l));
jump3:;
if(k+x>n||l-y<||graph[k+x][l-y]=='B')goto jump4; if(graph[k+x][l-y]=='J')cnt++;
if(i+x>n||j-y<||graph[i+x][j-y]=='B')goto jump4; if(graph[i+x][j-y]=='J')cnt++;
if(cnt>=)ans=max(ans,(k-i)*(k-i)+(j-l)*(j-l));
jump4:;
}
}
}
printf("%d",ans); return ;
}
20161023