Given an integer n, return the number of trailing zeroes in n!.
Example 1:
Input: 3
Output: 0
Explanation: 3! = 6, no trailing zero.
Example 2:
Input: 5
Output: 1
Explanation: 5! = 120, one trailing zero.
Note: Your solution should be in logarithmic time complexity.
Credits:
Special thanks to @ts for adding this problem and creating all test cases.
这道题并没有什么难度,是让求一个数的阶乘末尾0的个数,也就是要找乘数中 10 的个数,而 10 可分解为2和5,而2的数量又远大于5的数量(比如1到 10 中有2个5,5个2),那么此题即便为找出5的个数。仍需注意的一点就是,像 25,125,这样的不只含有一个5的数字需要考虑进去,参加代码如下:
C++ 解法一:
class Solution {
public:
int trailingZeroes(int n) {
int res = ;
while (n) {
res += n / ;
n /= ;
}
return res;
}
};
Java 解法一:
public class Solution {
public int trailingZeroes(int n) {
int res = 0;
while (n > 0) {
res += n / 5;
n /= 5;
}
return res;
}
}
这题还有递归的解法,思路和上面完全一样,写法更简洁了,一行搞定碉堡了。
C++ 解法二:
class Solution {
public:
int trailingZeroes(int n) {
return n == ? : n / + trailingZeroes(n / );
}
};
Java 解法二:
public class Solution {
public int trailingZeroes(int n) {
return n == 0 ? 0 : n / 5 + trailingZeroes(n / 5);
}
}
Github 同步地址:
https://github.com/grandyang/leetcode/issues/172
类似题目:
Preimage Size of Factorial Zeroes Function
参考资料: