话说AC自动机有什么用......我想要自动AC机
AC自动机简介:
首先简要介绍一下AC自动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一。一个常见的例子就是给出n个单词,再给出一段包含m个字符的文 章,让你找出有多少个单词在文章里出现过。要搞懂AC自动机,先得有字典树Trie和KMP模式匹配算法的基础知识。KMP算法是单模式串的字符匹配算 法,AC自动机是多模式串的字符匹配算法。
AC自动机的构造:
1.构造一棵Trie,作为AC自动机的搜索数据结构。
2.构造fail指针,使当前字符失配时跳转到具有最长公共前后缀的字符继续匹配。如 同 KMP算法一样, AC自动机在匹配时如果当前字符匹配失败,那么利用fail指针进行跳转。由此可知如果跳转,跳转后的串的前缀,必为跳转前的模式串的后缀并且跳转的新位 置的深度(匹配字符个数)一定小于跳之前的节点。所以我们可以利用 bfs在 Trie上面进行 fail指针的求解。
3.扫描主串进行匹配。
AC自动机详讲:
我们给出5个单词,say,she,shr,he,her。给定字符串为yasherhs。问多少个单词在字符串中出现过。
一、Trie
首先我们需要建立一棵Trie。但是这棵Trie不是普通的Trie,而是带有一些特殊的性质。
首先会有3个重要的指针,分别为p, p->fail, temp。
1.指针p,指向当前匹配的字符。若p指向root,表示当前匹配的字符序列为空。(root是Trie入口,没有实际含义)。
2.指针p->fail,p的失败指针,指向与字符p相同的结点,若没有,则指向root。
3.指针temp,测试指针(自己命名的,容易理解!~),在建立fail指针时有寻找与p字符匹配的结点的作用,在扫描时作用最大,也最不好理解。
对于Trie树中的一个节点,对应一个序列s[1...m]。此时,p指向字符s[m]。若在下一个字符处失配,即p->next[s[m+1]] == NULL,则由失配指针跳到另一个节点(p->fail)处,该节点对应的序列为s[i...m]。若继续失配,则序列依次跳转直到序列为空或出现 匹配。在此过程中,p的值一直在变化,但是p对应节点的字符没有发生变化。在此过程中,我们观察可知,最终求得得序列s则为最长公共后缀。另外,由于这个 序列是从root开始到某一节点,则说明这个序列有可能是某些序列的前缀。
再次讨论p指针转移的意义。如果p指针在某一字符s[m+1]处失配(即p->next[s[m+1]] == NULL),则说明没有单词s[1...m+1]存在。此时,如果p的失配指针指向root,则说明当前序列的任意后缀不会是某个单词的前缀。如果p的失 配指针不指向root,则说明序列s[i...m]是某一单词的前缀,于是跳转到p的失配指针,以s[i...m]为前缀继续匹配s[m+1]。
对于已经得到的序列s[1...m],由于s[i...m]可能是某单词的后缀,s[1...j]可能是某单词的前缀,所以s[1...m]中可能会出现 单词。此时,p指向已匹配的字符,不能动。于是,令temp = p,然后依次测试s[1...m], s[i...m]是否是单词。
构造的Trie为:
二、构造失败指针
用BFS来构造失败指针,与KMP算法相似的思想。
首先,root入队,第1次循环时处理与root相连的字符,也就是各个单词的第一个字符h和s,因为第一个字符不匹配需要重新匹配,所以第一个字符都指
向root(root是Trie入口,没有实际含义)失败指针的指向对应下图中的(1),(2)两条虚线;第2次进入循环后,从队列中先弹出h,接下来p
指向h节点的fail指针指向的节点,也就是root;p=p->fail也就是p=NULL说明匹配序列为空,则把节点e的fail指针指向
root表示没有匹配序列,对应图-2中的(3),然后节点e进入队列;第3次循环时,弹出的第一个节点a的操作与上一步操作的节点e相同,把a的
fail指针指向root,对应图-2中的(4),并入队;第4次进入循环时,弹出节点h(图中左边那个),这时操作略有不同。由于
p->next[i]!=NULL(root有h这个儿子节点,图中右边那个),这样便把左边那个h节点的失败指针指向右边那个root的儿子节点
h,对应图-2中的(5),然后h入队。以此类推:在循环结束后,所有的失败指针就是图-2中的这种形式。
三、扫描
构造好Trie和失败指针后,我们就可以对主串进行扫描了。这个过程和KMP算法很类似,但是也有一定的区别,主要是因为AC自动机处理的是多串模式,需要防止遗漏某个单词,所以引入temp指针。
匹配过程分两种情况:(1)当前字符匹配,表示从当前节点沿着树边有一条路径可以到达目标字符,此时只需沿该路径走向下一个节点继续匹配即可,目标
字符串指针移向下个字符继续匹配;(2)当前字符不匹配,则去当前节点失败指针所指向的字符继续匹配,匹配过程随着指针指向root结束。重复这2个过程
中的任意一个,直到模式串走到结尾为止。
对照上图,看一下模式匹配这个详细的流程,其中模式串为yasherhs。对于i=0,1。Trie中没有对应的路径,故不做任何操
作;i=2,3,4时,指针p走到左下节点e。因为节点e的count信息为1,所以cnt+1,并且讲节点e的count值设置为-1,表示改单词已经
出现过了,防止重复计数,最后temp指向e节点的失败指针所指向的节点继续查找,以此类推,最后temp指向root,退出while循环,这个过程中
count增加了2。表示找到了2个单词she和he。当i=5时,程序进入第5行,p指向其失败指针的节点,也就是右边那个e节点,随后在第6行指向r
节点,r节点的count值为1,从而count+1,循环直到temp指向root为止。最后i=6,7时,找不到任何匹配,匹配过程结束。
到此,AC自动机入门知识就讲完了。HDU 2222入门题必须果断A掉。bzoj3172也要A。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<iomanip>
#include<cassert>
#include<climits>
#include<vector>
#include<list>
#define maxn 1000001
#define F(i,j,k) for(int i=j;i<=k;i++)
#define M(a,b) memset(a,b,sizeof(a))
#define FF(i,j,k) for(int i=j;i>=k;i--)
#define inf 0x7fffffff
#define maxm 2016
#define mod 1000000007
//#define LOCAL
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int pos[maxn];
struct AC_automation
{
int cnt;
int next[maxn][],sum[maxn],fail[maxn],q[maxn];
char ch[maxn];
AC_automation()
{
cnt=;
F(i,,) next[][i]=;
}
void insert(int &pos)
{
int now=;
cin>>ch;
int len=strlen(ch)-;
F(i,,len){
if(!next[now][ch[i]-'a']) next[now][ch[i]-'a']=++cnt;
now=next[now][ch[i]-'a'];
sum[now]++;
}
pos=now;
}
void build_fail()
{
int head=,tail=;
q[]=;
fail[]=;
while(head<tail)
{
int now=q[head];
head++;
F(i,,){
int v=next[now][i];
if(!v) continue;
int k=fail[now];
while(!next[k][i]) k=fail[k];
fail[v]=next[k][i];
q[tail++]=v;
}
}
FF(i,tail-,){
sum[fail[q[i]]]+=sum[q[i]];
}
}
}ac;
long long n,m;
int main()
{
std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y;
#ifdef LOCAL
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
#endif
cin>>n;
F(i,,n){
ac.insert(pos[i]);
}
ac.build_fail();
F(i,,n){
cout<<ac.sum[pos[i]]<<endl;
}
return ;
}
bzoj 3172