阿里电话面试问题----100万个URL如何找到出现频率最高的前100个?

内推阿里电话面试中面试官给我出的一个题:

我想的头一个解决方案,就是放到stl 的map里面对出现的频率作为pair的第二个字段进行排序,之后按照排序结果返回:

下面口说无凭,show your code,当然在讨论帖子中遭遇了工程界大牛的sql代码在技术上的碾压。什么是做工程的,什么是工程师的思维,不要一味的埋头搞算法。

讨论帖:

http://bbs.csdn.net/topics/391080906

python 抓取百度搜索结果的讨论贴:

http://bbs.csdn.net/topics/391077668

实验数据,python从百度抓得:

# -*- coding: utf-8 -*-
"""
Spyder Editor This is a temporary script file.
""" import urllib2
import re
import os #connect to a URL
#一页的搜索结果中url大概是200个左右
file_url = open('url.txt','ab+')
#搜索框里的东西,这块可以设置成数字好让每次搜索的结果不一样
search = '123'
url = "http://www.baidu.com/s?wd="+search def setUrlToFile():
website = urllib2.urlopen(url)
#read html code html = website.read() #use re.findall to get all the links links = re.findall('"((http|ftp)s?://.*?)"', html) for s in links:
print s[0]
if len(s[0]) < 256:
file_url.write(s[0]+'\r\n') #收集实验数据
for i in range(0,50):
setUrlToFile() file_url.close() ###需要重新打开再读一下
file_url = open('url.txt','r')
file_lines = len(file_url.readlines())
print "there are %d url in %s" %(file_lines,file_url)
file_url.close()

方法1:

c++  写的读 url.txt放到map里面

对map<string , int>的value进行排序,得到前100个

运行一下也就55s,还是很快的,url长度进行了限制小于256个字符

#pragma once
/*
//计算代码段运行时间的类
//
*/
#include <iostream> #ifndef ComputeTime_h
#define ComputeTime_h //单位毫秒 class ComputeTime
{
private:
int Initialized;
__int64 Frequency;
__int64 BeginTime; public: bool Avaliable();
double End();
bool Begin();
ComputeTime();
virtual ~ComputeTime(); }; #endif
#include "stdafx.h"
#include "ComputeTime.h"
#include <iostream>
#include <Windows.h> ComputeTime::ComputeTime()
{
Initialized=QueryPerformanceFrequency((LARGE_INTEGER *)&Frequency);
} ComputeTime::~ComputeTime()
{ } bool ComputeTime::Begin()
{
if(!Initialized)
return 0; return QueryPerformanceCounter((LARGE_INTEGER *)&BeginTime);
} double ComputeTime::End()
{
if(!Initialized)
return 0; __int64 endtime; QueryPerformanceCounter((LARGE_INTEGER *)&endtime); __int64 elapsed = endtime-BeginTime; return ((double)elapsed/(double)Frequency)*1000.0; //单位毫秒
} bool ComputeTime::Avaliable()
{
return Initialized;
} // sortUrl.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
//#include <utility>
#include <vector>
#include <map>
#include <fstream>
#include <iostream>
#include <string>
#include <algorithm>
#include "ComputeTime.h" using namespace std; map<string,int> urlfrequency; typedef pair<string, int> PAIR; struct CmpByValue
{
bool operator()(const PAIR& lhs, const PAIR& rhs)
{
return lhs.second > rhs.second;
}
}; void find_largeTH(map<string,int> urlfrequency)
{
//把map中元素转存到vector中 ,按照value排序
vector<PAIR> url_quency_vec(urlfrequency.begin(), urlfrequency.end());
sort(url_quency_vec.begin(), url_quency_vec.end(), CmpByValue());
//url_quency_vec.size()
for (int i = 0; i != 100; ++i)
{
cout<<url_quency_vec[i].first<<endl;
cout<<url_quency_vec[i].second<<endl;
}
} //urlheap的建立过程,URL插入时候存在的
void insertUrl(string url)
{
pair<map<string ,int>::iterator, bool> Insert_Pair;
Insert_Pair = urlfrequency.insert(map<string, int>::value_type(url,1)); if (Insert_Pair.second == false)
{
(Insert_Pair.first->second++);
} } int _tmain(int argc, _TCHAR* argv[])
{
fstream URLfile;
char buffer[1024];
URLfile.open("url.txt",ios::in|ios::out|ios::binary); if (! URLfile.is_open())
{ cout << "Error opening file"; exit (1); }
else
{
cout<<"open file success!"<<endl;
} ComputeTime cp;
cp.Begin();
int i = 0;
while (!URLfile.eof())
{
URLfile.getline (buffer,1024);
//cout << buffer << endl;
string temp(buffer);
//cout<<i++<<endl;
insertUrl(temp);
} find_largeTH(urlfrequency); cout<<"running time: "<<cp.End()<<"ms"<<endl; getchar();
//system("pause");
return 0;
}

实验结果:55s还不算太差,可以接受,毕竟是头脑中的第一个解决方案。

阿里电话面试问题----100万个URL如何找到出现频率最高的前100个?

方法2:

hash code 版本,只是不知道怎么 hash和url关联起来:

// urlFind.cpp : 定义控制台应用程序的入口点。
// // sortUrl.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h" #include <vector>
#include <map>
#include <fstream>
#include <iostream>
#include <string>
#include <algorithm>
#include <unordered_map>
#include "ComputeTime.h" using namespace std; map<unsigned int,int> urlhash; typedef pair<unsigned int, int> PAIR; struct info{
string url;
int cnt;
bool operator<(const info &r) const {
return cnt>r.cnt;
}
}; unordered_map<string,int> count; //priority_queue<info> pq; struct CmpByValue
{
bool operator()(const PAIR& lhs, const PAIR& rhs)
{
return lhs.second > rhs.second;
}
}; void find_largeTH(map<unsigned int,int> urlhash)
{
//把map中元素转存到vector中 ,按照value排序
vector<PAIR> url_quency_vec(urlhash.begin(), urlhash.end());
sort(url_quency_vec.begin(), url_quency_vec.end(), CmpByValue());
//url_quency_vec.size()
for (int i = 0; i != 100; ++i)
{
cout<<url_quency_vec[i].first<<endl;
cout<<url_quency_vec[i].second<<endl;
}
} // BKDR Hash Function
unsigned int BKDRHash(char *str)
{
unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
unsigned int hash = 0; while (*str)
{
hash = hash * seed + (*str++);
} return (hash & 0x7FFFFFFF);
} //
void insertUrl(string url)
{ unsigned int hashvalue = BKDRHash((char *)url.c_str());
pair<map<unsigned int ,int>::iterator, bool> Insert_Pair;
Insert_Pair = urlhash.insert(map<unsigned int, int>::value_type(hashvalue,1)); if (Insert_Pair.second == false)
{
(Insert_Pair.first->second++);
} } int _tmain(int argc, _TCHAR* argv[])
{
fstream URLfile;
char buffer[1024];
URLfile.open("url.txt",ios::in|ios::out|ios::binary); if (! URLfile.is_open())
{ cout << "Error opening file"; exit (1); }
else
{
cout<<"open file success!"<<endl;
} ComputeTime cp;
cp.Begin();
int i = 0;
while (!URLfile.eof())
{
URLfile.getline (buffer,1024);
//cout << buffer << endl;
string temp(buffer);
//cout<<i++<<endl;
insertUrl(temp);
} find_largeTH(urlhash); cout<<"running time: "<<cp.End()<<"ms"<<endl; getchar();
//system("pause");
return 0;
}

性能15秒左右:缺点在于没有把hashcode和url进行关联,技术的处理速度已经非常可观了

阿里电话面试问题----100万个URL如何找到出现频率最高的前100个?

方法3:

下面用STL的hash容器unordered_map,和优先队列(就是堆)来实现这个问题。

// urlFind.cpp : 定义控制台应用程序的入口点。
// // sortUrl.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h" #include <vector>
#include <map>
#include <fstream>
#include <iostream>
#include <string>
#include <algorithm>
#include <unordered_map>
#include <queue>
#include "ComputeTime.h" using namespace std; typedef pair<string, int> PAIR; struct info
{
string url;
int cnt;
bool operator<(const info &r) const
{
return cnt<r.cnt;
}
}; unordered_map<string,int> hash_url; priority_queue<info> pq; void find_largeTH(unordered_map<string,int> urlhash)
{ unordered_map<string,int>::iterator iter = urlhash.begin();
info temp;
for (; iter!= urlhash.end();++iter)
{
temp.url = iter->first;
temp.cnt = iter->second;
pq.push(temp);
} for (int i = 0; i != 100; ++i)
{ cout<<pq.top().url<<endl;
cout<<pq.top().cnt<<endl;
pq.pop();
}
} void insertUrl(string url)
{ pair<unordered_map<string ,int>::iterator, bool> Insert_Pair;
Insert_Pair = hash_url.insert(unordered_map<string, int>::value_type(url,1)); if (Insert_Pair.second == false)
{
(Insert_Pair.first->second++);
} } int _tmain(int argc, _TCHAR* argv[])
{
fstream URLfile;
char buffer[1024];
URLfile.open("url.txt",ios::in|ios::out|ios::binary); if (! URLfile.is_open())
{ cout << "Error opening file"; exit (1); }
else
{
cout<<"open file success!"<<endl;
} ComputeTime cp;
cp.Begin();
int i = 0;
while (!URLfile.eof())
{
URLfile.getline (buffer,1024);
//cout << buffer << endl;
string temp(buffer);
//cout<<i++<<endl;
insertUrl(temp);
} find_largeTH(hash_url); cout<<"running time: "<<cp.End()<<"ms"<<endl; getchar();
//system("pause");
return 0;
}

基本上算是算法里面比较优秀的解决方案了,面试官如果能听到这个方案应该会比较欣喜。



阿里电话面试问题----100万个URL如何找到出现频率最高的前100个?


方法4:实验耗时未知,技术上碾压了上述解决方案,中高年轻人,不要重复造*!哈哈

数据库,SQL语句:

load data infile "d:/bigdata.txt" into table tb_url(url);

SELECT
url,
count(url) as show_count
FROM
tb_url
GROUP BY url
ORDER BY show_count desc
LIMIT 100




上一篇:Spring MVC中Session的正确用法<转>


下一篇:java的日期