一, jar依赖,jsc创建。
package ML.BasicStatistics; import com.google.common.collect.Lists;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaDoubleRDD;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.DoubleFlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.mllib.linalg.Matrices;
import org.apache.spark.mllib.linalg.Matrix;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.stat.KernelDensity;
import org.apache.spark.mllib.stat.MultivariateStatisticalSummary;
import org.apache.spark.mllib.stat.Statistics;
import org.apache.spark.mllib.stat.test.ChiSqTestResult;
import org.apache.spark.mllib.stat.test.KolmogorovSmirnovTestResult;
import org.apache.spark.mllib.util.MLUtils;
import org.apache.spark.rdd.RDD;
import scala.Tuple2;
import scala.runtime.Statics;
import static org.apache.spark.mllib.random.RandomRDDs.*; import java.util.*; /**
* TODO
*
* @ClassName: BasicStatistics
* @author: DingH
* @since: 2019/4/3 16:11
*/
public class BasicStatistics {
public static void main(String[] args) {
System.setProperty("hadoop.home.dir","E:\\hadoop-2.6.5");
SparkConf conf = new SparkConf().setAppName("BasicStatistics").setMaster("local");
JavaSparkContext jsc = new JavaSparkContext(conf);
二。Summary statistics
/**
* @Title: Statistics.colStats一个实例MultivariateStatisticalSummary,其中包含按列的max,min,mean,variance和非零数,以及总计数
* Summary statistics:摘要统计
*/
JavaRDD<Vector> parallelize = jsc.parallelize(Arrays.asList(
Vectors.dense(1, 0, 3),
Vectors.dense(2, 0, 4),
Vectors.dense(3, 0, 5)
));
MultivariateStatisticalSummary summary = Statistics.colStats(parallelize.rdd());
System.out.println(summary.mean());
System.out.println(summary.variance());
System.out.println(summary.numNonzeros());
三。Correlations:相关性
/**
* @Title: Correlations:相关性
*/
JavaRDD<Tuple2<String, String>> parallelize = jsc.parallelize(Lists.newArrayList(
new Tuple2<String, String>("cat", "11"),
new Tuple2<String, String>("dog", "22"),
new Tuple2<String, String>("cat", "33"),
new Tuple2<String, String>("pig", "44") )); JavaDoubleRDD seriesX = parallelize.mapPartitionsToDouble(new DoubleFlatMapFunction<Iterator<Tuple2<String, String>>>() {
public Iterable<Double> call(Iterator<Tuple2<String, String>> tuple2Iterator) throws Exception {
ArrayList<Double> strings = new ArrayList<Double>();
while (tuple2Iterator.hasNext()){
strings.add(Double.parseDouble(tuple2Iterator.next()._2));
}
return strings;
}
});
JavaDoubleRDD seriesY = parallelize.mapPartitionsToDouble(new DoubleFlatMapFunction<Iterator<Tuple2<String, String>>>() {
public Iterable<Double> call(Iterator<Tuple2<String, String>> tuple2Iterator) throws Exception {
ArrayList<Double> strings = new ArrayList<Double>();
while (tuple2Iterator.hasNext()){
strings.add(Double.parseDouble(tuple2Iterator.next()._2)+1);
}
return strings;
}
});
//compute the correlation using Pearson's method. Enter "spearman" for Spearman's method. If a
//method is not specified, Pearson's method will be used by default.
double correlation = Statistics.corr(seriesX.srdd(), seriesY.srdd(), "pearson"); JavaRDD<Vector> parallelize11 = jsc.parallelize(Arrays.asList(
Vectors.dense(1, 0, 3),
Vectors.dense(2, 0, 4),
Vectors.dense(3, 0, 5)
));// note that each Vector is a row and not a column
Matrix correlation2 = Statistics.corr(parallelize11.rdd(), "spearman");
System.out.println(correlation2);
三,Stratified sampling:分层抽样
/**
* @Title: Stratified sampling:分层抽样
*/
JavaRDD<Tuple2<String, String>> parallelize = jsc.parallelize(Lists.newArrayList(
new Tuple2<String, String>("cat", "11"),
new Tuple2<String, String>("dog", "22"),
new Tuple2<String, String>("cat", "33"),
new Tuple2<String, String>("pig", "44") ));
JavaPairRDD data = parallelize.mapToPair(new PairFunction<Tuple2<String, String>, String, String>() {
public Tuple2<String, String> call(Tuple2<String, String> stringStringTuple2) throws Exception {
return new Tuple2<String, String>(stringStringTuple2._1, stringStringTuple2._2);
}
}); // an RDD of any key value pairs
Map<String, Double> fractions = new HashMap<String, Double>(); // specify the exact fraction desired from each key
fractions.put("cat",0.5); //对于每个key取值的概率
fractions.put("dog",0.8);
fractions.put("pig",0.8);
// Get an exact sample from each stratum
JavaPairRDD approxSample = data.sampleByKey(false, fractions);
JavaPairRDD exactSample = data.sampleByKeyExact(false, fractions);
approxSample.foreach(new VoidFunction() {
public void call(Object o) throws Exception {
System.out.println(o);
}
});
四。Hypothesis testing 假设检验
/**
* @Title: Hypothesis testing 假设检验
*/ Vector vec = Vectors.dense(1,2,3,4); // a vector composed of the frequencies of events // compute the goodness of fit. If a second vector to test against is not supplied as a parameter,
// the test runs against a uniform distribution.
ChiSqTestResult goodnessOfFitTestResult = Statistics.chiSqTest(vec);
// summary of the test including the p-value, degrees of freedom, test statistic, the method used,
// and the null hypothesis.
System.out.println(goodnessOfFitTestResult); Matrix mat = Matrices.dense(3,2,new double[]{1,2,3,4,5,6}); // a contingency matrix // conduct Pearson's independence test on the input contingency matrix
ChiSqTestResult independenceTestResult = Statistics.chiSqTest(mat);
// summary of the test including the p-value, degrees of freedom...
System.out.println(independenceTestResult); JavaRDD<LabeledPoint> obs = MLUtils.loadLibSVMFile(jsc.sc(), "/data...").toJavaRDD(); // an RDD of labeled points // The contingency table is constructed from the raw (feature, label) pairs and used to conduct
// the independence test. Returns an array containing the ChiSquaredTestResult for every feature
// against the label.
ChiSqTestResult[] featureTestResults = Statistics.chiSqTest(obs.rdd());
int i = 1;
for (ChiSqTestResult result : featureTestResults) {
System.out.println("Column " + i + ":");
System.out.println(result); // summary of the test
i++;
} JavaDoubleRDD data = jsc.parallelizeDoubles(Arrays.asList(0.2, 1.0,0.3));
KolmogorovSmirnovTestResult testResult = Statistics.kolmogorovSmirnovTest(data,"norm");
// summary of the test including the p-value, test statistic,
// and null hypothesis
// if our p-value indicates significance, we can reject the null hypothesis
System.out.println(testResult);
五。Random data generation
/**
* @Title: Random data generation :uniform, standard normal, or Poisson.
*/ JavaDoubleRDD u = normalJavaRDD(jsc, 100,2);
// Apply a transform to get a random double RDD following `N(1, 4)`.
JavaRDD<Double> map = u.map(new Function<Double, Double>() {
public Double call(Double aDouble) throws Exception {
return 1.0 + 2.0 * aDouble;
}
});
map.foreach(new VoidFunction<Double>() {
public void call(Double aDouble) throws Exception {
System.out.println(aDouble);
}
});
六。Kernel density estimation
/**
* @Title: Kernel density estimation
*/
JavaRDD<Double> data = jsc.parallelize(Arrays.asList(1.0, 2.0, 3.0));// an RDD of sample data // Construct the density estimator with the sample data and a standard deviation for the Gaussian
// kernels
KernelDensity kd = new KernelDensity()
.setSample(data)
.setBandwidth(3.0); // Find density estimates for the given values
double[] densities = kd.estimate(new double[] {-1.0, 2.0, 5.0});
for (int i = 0; i < densities.length; i++) {
System.out.println(densities[i]);
}