图像金字塔原理
expand = 扩大+卷积
拉普拉斯金字塔
PyrDown:降采样
PyrUp:还原
example
import cv2 as cv
import numpy as np
# 图像金字塔和拉普拉斯金字塔(L1 = g1 - expand(g2)):reduce:高斯模糊+降采样,expand:扩大+卷积
# PyrDown降采样,PyrUp还原
def pyramid_demo(image):
level = 4
temp = image.copy()
pyramid_images = []
for i in range(level):
dst = cv.pyrDown(temp)
pyramid_images.append(dst)
cv.imshow("pyramid_down_"+str(i+1), dst)
temp = dst.copy()
return pyramid_images
def laplace_demo(image): # 注意:图片必须是满足2^n这种分辨率
pyramid_images = pyramid_demo(image)
level = len(pyramid_images)
for i in range(level-1, -1, -1):
if i-1 < 0:
expand = cv.pyrUp(pyramid_images[i], dstsize=image.shape[:2])
lpls = cv.subtract(image, expand)
cv.imshow("laplace_demo"+str(i), lpls)
else:
expand = cv.pyrUp(pyramid_images[i], dstsize=pyramid_images[i-1].shape[:2])
lpls = cv.subtract(pyramid_images[i-1], expand)
cv.imshow("laplace_demo"+str(i), lpls)
if __name__ == '__main__':
src = cv.imread("../images/lena.jpg") # 读入图片放进src中
cv.imshow("demo", src) # 将src图片放入该创建的窗口中
# pyramid_demo(src)
laplace_demo(src)
cv.waitKey(0) # 等有键输入或者1000ms后自动将窗口消除,0表示只用键输入结束窗口
cv.destroyAllWindows() # 关闭所有窗口