We are given an array A
of positive integers, and two positive integers L
and R
(L <= R
).
Return the number of (contiguous, non-empty) subarrays such that the value of the maximum array element in that subarray is at least L
and at most R
.
Example : Input: A = [2, 1, 4, 3] L = 2 R = 3 Output: 3 Explanation: There are three subarrays that meet the requirements: [2], [2, 1], [3].
Note:
- L, R and
A[i]
will be an integer in the range[0, 10^9]
. - The length of
A
will be in the range of[1, 50000]
.
给定一个元素都是正整数的数组A
,正整数 L
以及 R
(L <= R
)。
求连续、非空且其中最大元素满足大于等于L
小于等于R
的子数组个数。
例如 : 输入: A = [2, 1, 4, 3] L = 2 R = 3 输出: 3 解释: 满足条件的子数组: [2], [2, 1], [3].
注意:
- L, R 和
A[i]
都是整数,范围在[0, 10^9]
。 - 数组
A
的长度范围在[1, 50000]
。
Runtime: 256ms
Memory Usage: 19.6 MB1 class Solution { 2 func numSubarrayBoundedMax(_ A: [Int], _ L: Int, _ R: Int) -> Int { 3 var res:Int = 0 4 var left:Int = -1 5 var right:Int = -1 6 for i in 0..<A.count 7 { 8 if A[i] > R 9 { 10 left = i 11 right = i 12 continue 13 } 14 if A[i] >= L 15 { 16 right = i 17 } 18 res += right - left 19 } 20 return res 21 } 22 }
Runtime: 288 ms Memory Usage: 19.6 MB
1 class Solution { 2 func numSubarrayBoundedMax(_ A: [Int], _ L: Int, _ R: Int) -> Int { 3 var first = 0,second = 0 4 var result = 0,rangeCount = 0 5 6 while second < A.count && first < A.count { 7 if A[second] >= L && A[second] <= R { 8 result += (second - first + 1) 9 rangeCount = second - first + 1 10 } else if (A[second] < L) { 11 result += rangeCount 12 } else { // A[second] > R 13 first = second + 1 14 rangeCount = 0 15 } 16 second += 1 17 } 18 return result 19 } 20 }
300ms
1 class Solution { 2 func numSubarrayBoundedMax(_ A: [Int], _ L: Int, _ R: Int) -> Int { 3 var result = 0 4 var numberOfLows = 0 5 var numberOfEquals = 0 6 enum Status { 7 case equal 8 case low 9 case high 10 } 11 var status = Status.equal 12 13 for (_, value) in A.enumerated() { 14 switch status { 15 case .equal: 16 if value < L { 17 numberOfLows = 1 18 numberOfEquals += 1 19 } else if value > R { 20 result += numberOfSubarrayInLength(numberOfEquals) 21 numberOfEquals = 0 22 } else { 23 numberOfEquals += 1 24 } 25 case .low: 26 if value < L { 27 numberOfLows += 1 28 numberOfEquals += 1 29 } else if value > R { 30 result += numberOfSubarrayInLength(numberOfEquals) 31 numberOfEquals = 0 32 result -= numberOfSubarrayInLength(numberOfLows) 33 numberOfLows = 0 34 } else { 35 numberOfEquals += 1 36 result -= numberOfSubarrayInLength(numberOfLows) 37 numberOfLows = 0 38 } 39 case .high: 40 if value < L { 41 numberOfLows = 1 42 numberOfEquals = 1 43 } else if value > R { 44 45 } else { 46 numberOfLows = 0 47 numberOfEquals = 1 48 } 49 } 50 if value < L { 51 status = .low 52 } else if value > R { 53 status = .high 54 } else { 55 status = .equal 56 } 57 } 58 result -= numberOfSubarrayInLength(numberOfLows) 59 result += numberOfSubarrayInLength(numberOfEquals) 60 return result 61 } 62 63 func numberOfSubarrayInLength(_ n: Int) -> Int { 64 if n <= 0 { 65 return 0 66 } 67 68 return n * (n + 1) / 2 69 } 70 }
356ms
1 class Solution { 2 func numSubarrayBoundedMax(_ A: [Int], _ L: Int, _ R: Int) -> Int { 3 var count = 0 4 for i in 0..<A.count { 5 var currMax = A[i] 6 for j in i..<A.count { 7 currMax = max(currMax, A[j]) 8 if currMax >= L && currMax <= R { 9 count += 1 10 } else if currMax > R { 11 break 12 } 13 } 14 } 15 return count 16 } 17 }
3816ms
1 class Solution { 2 func numSubarrayBoundedMax(_ A: [Int], _ L: Int, _ R: Int) -> Int { 3 if A.count <= 0 { return 0 } 4 var cursor = 0 5 var count = 0 6 while cursor < A.count { 7 for i in cursor ..< A.count { 8 let temp = A[cursor...i] 9 let max = temp.max()! 10 if max > R { 11 break 12 } 13 if max >= L { 14 count += 1 15 } 16 } 17 cursor += 1 18 } 19 return count 20 } 21 }