Given an integer array arr
, return the length of a maximum size turbulent subarray of arr
.
A subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
More formally, a subarray [arr[i], arr[i + 1], ..., arr[j]]
of arr
is said to be turbulent if and only if:
- For
i <= k < j
:-
arr[k] > arr[k + 1]
whenk
is odd, and -
arr[k] < arr[k + 1]
whenk
is even.
-
- Or, for
i <= k < j
:-
arr[k] > arr[k + 1]
whenk
is even, and -
arr[k] < arr[k + 1]
whenk
is odd.
-
Example 1:
Input: arr = [9,4,2,10,7,8,8,1,9] Output: 5 Explanation: arr[1] > arr[2] < arr[3] > arr[4] < arr[5]
Example 2:
Input: arr = [4,8,12,16] Output: 2
Example 3:
Input: arr = [100] Output: 1
Constraints:
1 <= arr.length <= 4 * 104
0 <= arr[i] <= 109
最长湍流子数组。
当 A 的子数组 A[i], A[i+1], ..., A[j] 满足下列条件时,我们称其为湍流子数组:
若 i <= k < j,当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
或 若 i <= k < j,当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。
也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。返回 A 的最大湍流子数组的长度。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-turbulent-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路是类似53题的动态规划。湍流子数组的定义是比较符号在相邻元素对之间翻转,那么我们可以定义两个数组 int[] increase 和 int[] decrease,都是以 nums[i] 为结尾的,最后一位是上升/下降的子数组。接下来分如下几种情况
- 如果nums[i] > nums[i - 1],说明最后一段是上升的,以他为结尾的子数组的最大长度 = 前一段是下降的子数组的最大长度 + 1
- 如果nums[i] < nums[i - 1],说明最后一段是下降的,以他为结尾的子数组的最大长度 = 前一段是上升的子数组的最大长度 + 1
- 如果nums[i] = nums[i - 1],说明最后一段是平行的,以他为结尾的子数组的最大长度只能是1
时间O(n)
空间O(n)
Java实现
1 class Solution { 2 public int maxTurbulenceSize(int[] A) { 3 int len = A.length; 4 // corner case 5 if (len < 2) { 6 return len; 7 } 8 9 // normal case 10 // 以 arr[i] 结尾,并且 arr[i - 1] < arr[i] 的湍流子数组的长度 11 int[] increased = new int[len]; 12 // 以 arr[i] 结尾,并且 arr[i - 1] > arr[i] 的湍流子数组的长度 13 int[] decreased = new int[len]; 14 increased[0] = 1; 15 decreased[0] = 1; 16 int res = 1; 17 for (int i = 1; i < len; i++) { 18 if (A[i - 1] < A[i]) { 19 increased[i] = decreased[i - 1] + 1; 20 decreased[i] = 1; 21 } else if (A[i - 1] > A[i]) { 22 increased[i] = 1; 23 decreased[i] = increased[i - 1] + 1; 24 } else { 25 increased[i] = 1; 26 decreased[i] = 1; 27 } 28 res = Math.max(res, Math.max(increased[i], decreased[i])); 29 } 30 return res; 31 } 32 }
跟53题类似,这里我提供一个不用额外空间的做法。
时间O(n)
空间O(n)
Java实现
1 class Solution { 2 public int maxTurbulenceSize(int[] A) { 3 int len = A.length; 4 // corner case 5 if (len < 2) { 6 return len; 7 } 8 9 // normal case 10 int increase = 1; 11 int decrease = 1; 12 int res = 1; 13 for (int i = 1; i < A.length; i++) { 14 if (A[i - 1] < A[i]) { 15 increase = decrease + 1; 16 decrease = 1; 17 } else if (A[i - 1] > A[i]) { 18 decrease = increase + 1; 19 increase = 1; 20 } else { 21 increase = 1; 22 decrease = 1; 23 } 24 res = Math.max(res, Math.max(increase, decrease)); 25 } 26 return res; 27 } 28 }
相关题目
918. Maximum Sum Circular Subarray
978. Longest Turbulent Subarray