利用k-means算法实现简单无监督学习案例

k-means Clustering(k平均聚类算法)

简介:

无监督学习对图像进行分类时,可以采用k-means算法。该算法实现简单,运行速度快。该算法要求事先知道数据所具有的类别数。k-means时数据最初的随机分类类别会对最终结果产生很大的影响。数据较少时k-means算法分类可能会失败。

k-means 算法:

  1. 为每个数据随机分配类
  2. 计算每个类的重心
  3. 计算每个数据与重心之间的距离,将该数据分配到重心距离最近的那个类
  4. 重复步骤2和步骤3直到没有数据的类别发生改变为止

实验:

类似于上一篇文章 讲解有监督学习实例 ,将色彩量化后图像的直方图作为识别时的特征量。

实验流程:

  1. 对图像进行减色化处理,然后计算直方图,将其用作特征量
  2. 对每张图随机分配类别0或类别1(已知类别数为2)
  3. 分别计算类别0和类别1的特征量的质心(质心存储在 gs=np.zeros((Class,12),dtype=np.float32)中),gs具有如下图所示的形状和内容:
    利用k-means算法实现简单无监督学习案例
  4. 对于每个图像,计算特征量与质心之间的距离(在此取欧式距离),并将图像类别指定为距离最近的质心所代表的类别
  5. 重复步骤3和步骤4直到没有数据的类别发生改变为止

实验代码(python):

import cv2
import numpy as np
import matplotlib.pyplot as plt
from glob import glob

# Dicrease color
def dic_color(img):
    img //= 63
    img = img * 64 + 32
    return img


# Database
def get_DB():
    # get training image path
    train = glob("../dataset/train/*")
    train.sort()

    # prepare database
    db = np.zeros((len(train), 13), dtype=np.int32)
    pdb = []

    # each train
    for i, path in enumerate(train):
        # read image
        img = dic_color(cv2.imread(path))
        # histogram
        for j in range(4):
            db[i, j] = len(np.where(img[..., 0] == (64 * j + 32))[0])
            db[i, j+4] = len(np.where(img[..., 1] == (64 * j + 32))[0])
            db[i, j+8] = len(np.where(img[..., 2] == (64 * j + 32))[0])

        # get class
        if 'akahara' in path:
            cls = 0
        elif 'madara' in path:
            cls = 1

        # store class label
        db[i, -1] = cls

        # add image path
        pdb.append(path)

    return db, pdb

# k-Means
def k_means(db, pdb, Class=2, th=0.5):
    # copy database
    feats = db.copy()

    # initiate random seed
    np.random.seed(4)

    # assign random class 
    for i in range(len(feats)):
        if np.random.random() < th:
            feats[i, -1] = 0
        else:
            feats[i, -1] = 1

    while True:
        # prepare gravity
        gs = np.zeros((Class, 12), dtype=np.float32)
        change_count = 0

        # compute gravity
        for i in range(Class):
            gs[i] = np.mean(feats[np.where(feats[..., -1] == i)[0], :12], axis=0)

        # re-labeling
        for i in range(len(feats)):
            # get distance each nearest graviry
            dis = np.sqrt(np.sum(np.square(np.abs(gs - feats[i, :12])), axis=1))

            # get new label
            pred = np.argmin(dis, axis=0)

            # if label is difference from old label
            if int(feats[i, -1]) != pred:
                change_count += 1
                feats[i, -1] = pred

        if change_count < 1:
            break

    for i in range(db.shape[0]):
        print(pdb[i], " Pred:", feats[i, -1])


db, pdb = get_DB()
k_means(db, pdb, th=0.3)

实验结果:

利用k-means算法实现简单无监督学习案例

上一篇:【机器学习】算法原理详细推导与实现(六):k-means算法


下一篇:K-means聚类算法