最小生成树概念:
一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。最小生成树其实是最小权重生成树的简称。
prim:
概念:普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。
实现过程:
图例 | 说明 | 不可选 | 可选 | 已选(Vnew) |
---|---|---|---|---|
此为原始的加权连通图。每条边一侧的数字代表其权值。 | - | - | - | |
顶点D被任意选为起始点。顶点A、B、E和F通过单条边与D相连。A是距离D最近的顶点,因此将A及对应边AD以高亮表示。 | C, G | A, B, E, F | D | |
下一个顶点为距离D或A最近的顶点。B距D为9,距A为7,E为15,F为6。因此,F距D或A最近,因此将顶点F与相应边DF以高亮表示。 | C, G | B, E, F | A, D | |
算法继续重复上面的步骤。距离A为7的顶点B被高亮表示。 | C | B, E, G | A, D, F | |
在当前情况下,可以在C、E与G间进行选择。C距B为8,E距B为7,G距F为11。E最近,因此将顶点E与相应边BE高亮表示。 | 无 | C, E, G | A, D, F, B | |
这里,可供选择的顶点只有C和G。C距E为5,G距E为9,故选取C,并与边EC一同高亮表示。 | 无 | C, G | A, D, F, B, E | |
顶点G是唯一剩下的顶点,它距F为11,距E为9,E最近,故高亮表示G及相应边EG。 | 无 | G | A, D, F, B, E, C | |
现在,所有顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。 | 无 | 无 | A, D, F, B, E, C, G |
算法模板:
#include<stdio.h>
#include<string.h>
#include <iostream>
#include <bits/stdc++.h>
#define IO ios::sync_with_stdio(false);\
cin.tie();\
cout.tie();
#define MAX 0x3f3f3f3f
using namespace std;
int logo[];//用来标记0和1 表示这个点是否被选择过
int map1[][];//邻接矩阵用来存储图的信息
int dis[];//记录任意一点到这个点的最近距离
int n;//点个数
int prim()
{
int i,j,now;
int sum=;
/*初始化*/
for(i=; i<=n; i++)
{
dis[i]=MAX;
logo[i]=;
}
/*选定1为起始点,初始化*/
for(i=; i<=n; i++)
{
dis[i]=map1[][i];
}
dis[]=;
logo[]=;
/*循环找最小边,循环n-1次*/
for(i=; i<n; i++)
{
now=MAX;
int min1=MAX;
for(j=; j<=n; j++)
{
if(logo[j]==&&dis[j]<min1)
{
now=j;
min1=dis[j];
}
}
if(now==MAX)
break;//防止不成图
logo[now]=;
sum+=min1;
for(j=; j<=n; j++)//添入新点后更新最小距离
{
if(logo[j]==&&dis[j]>map1[now][j])
dis[j]=map1[now][j];
}
}
if(i<n)
printf("?\n");
else
printf("%d\n",sum);
}
int main()
{
while(scanf("%d",&n),n)//n是点数
{
int m=n*(n-)/;//m是边数
memset(map1,0x3f3f3f3f,sizeof(map1));//map是邻接矩阵存储图的信息
for(int i=; i<m; i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if(c<map1[a][b])//防止重边
map1[a][b]=map1[b][a]=c;
}
prim();
}
}
Kruskal算法:
1.概览
Kruskal算法是一种用来寻找最小生成树的算法,在剩下的所有未选取的边中,找最小边,如果和已选取的边构成回路,则放弃,选取次小边。
2.实现过程
1).记Graph中有v个顶点,e个边
2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边
3).将原图Graph中所有e个边按权值从小到大排序
4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中 if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中 添加这条边到图Graphnew中
图例描述:
首先第一步,我们有一张图Graph,有若干点和边
将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了下图
在剩下的变中寻找。我们找到了CE。这里边的权重也是5
依次类推我们找到了6,7,7,即DF,AB,BE。
下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。最后就剩下EG和FG了。当然我们选择了EG。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n, m,sum;
struct node
{
int start,end,power;//start为起始点,end为终止点,power为权值
} edge[];
int pre[]; int cmp(node a, node b)
{
return a.power<b.power;//按照权值排序
} int find(int x)//并查集找祖先
{
if(x!=pre[x])
{
pre[x]=find(pre[x]);
}
return pre[x];
} void merge(int x,int y,int n)//并查集合并函数,n是用来记录最短路中应该加入哪个点
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
pre[fx]=fy;
sum+=edge[n].power;
}
}
int main()
{
while(~scanf("%d", &n), n)//n是点数
{
sum=;
m=n*(n-)/;//m是边数,可以输入
int i;
int start,end,power;
for(i=; i<=m; i++)
{
scanf("%d %d %d", &start, &end, &power);
edge[i].start=start,edge[i].end=end,edge[i].power=power;
}
for(i=; i<=m; i++)
{
pre[i]=i;
}//并查集初始化
sort(edge+, edge+m+,cmp);
for(i=; i <= m; i++)
{
merge(edge[i].start,edge[i].end,i);
}
printf("%d\n",sum);
}
return ;
}