Source
Print numbers from 1 to the largest number with N digits by recursion. Example Given N = 1, return [1,2,3,4,5,6,7,8,9]. Given N = 2, return [1,2,3,4,5,6,7,8,9,10,11,12,...,99]. Note It's pretty easy to do recursion like: recursion(i) { if i > largest number: return results.add(i) recursion(i + 1) } however this cost a lot of recursion memory as the recursion depth maybe very large. Can you do it in another way to recursive with at most N depth? Challenge Do it in recursion, not for-loop.
题解
从小至大打印 N 位的数列,正如题目中所提供的 recursion(i)
, 解法简单粗暴,但问题在于 N 稍微大一点时栈就溢出了,因为递归深度太深了。能联想到的方法大概有两种,一种是用排列组合的思想去解释,把0~9当成十个不同的数(字符串表示),塞到 N 个坑位中,这个用 DFS 来解应该是可行的;另一个则是使用数学方法,依次递归递推,比如 N=2 可由 N=1递归而来,具体方法则是乘10进位加法。题中明确要求递归深度最大不超过 N, 故 DFS 方法比较危险。
Java
public class Solution { /** * @param n: An integer. * return : An array storing 1 to the largest number with n digits. */ public List<Integer> numbersByRecursion(int n) { List<Integer> result = new ArrayList<Integer>(); if (n <= 0) { return result; } helper(n, result); return result; } private void helper(int n, List<Integer> ret) { if (n == 0) return; helper(n - 1, ret); // current base such as 10, 20, 30... int base = (int)Math.pow(10, n - 1); // get List size before for loop int size = ret.size(); for (int i = 1; i < 10; i++) { // add 10, 100, 1000... ret.add(i * base); for (int j = 0; j < size; j++) { // add 11, 12, 13... ret.add(ret.get(j) + base * i); } } } }
源码分析
递归步的截止条件n == 0
, 由于需要根据之前 N-1 位的数字递推,base
每次递归一层都需要乘10,size
需要在for
循环之前就确定。
复杂度分析
添加 10^n 个元素,时间复杂度 O(10^n), 空间复杂度 O(1).