本文基于《Spark 最佳实践》第6章 Spark 流式计算。
我们知道网站用户访问流量是不间断的,基于网站的访问日志,即 Web log 分析是典型的流式实时计算应用场景。比如百度统计,它可以做流量分析、来源分析、网站分析、转化分析。另外还有特定场景分析,比如安全分析,用来识别 CC 攻击、 SQL 注入分析、脱库等。这里我们简单实现一个类似于百度分析的系统。
代码见 https://github.com/libaoquan95/WebLogAnalyse
1.模拟生成 web log 记录
在日志中,每行代表一条访问记录,典型格式如下:
46.156.87.72 - - [2018-05-15 06:00:30] "GET /upload.php HTTP/1.1" 200 0 "http://www.baidu.com/s?wd=spark" "Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; Trident/6.0)" "-"
分别代表:访问 ip,时间戳,访问页面,响应状态,搜索引擎索引,访问 Agent。
简单模拟一下数据收集和发送的环节,用一个 Python 脚本随机生成 Nginx 访问日志,为了方便起见,不使用 HDFS,使用单机文件系统。
首先,新建文件夹用于存放日志文件
$ mkdir Documents/nginx
$ mkdir Documents/nginx/log
$ mkdir Documents/nginx/log/tmp
然后,使用 Python 脚本随机生成 Nginx 访问日志,并为脚本设置执行权限, 代码见 sample_web_log.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import random
import time
class WebLogGeneration(object):
# 类属性,由所有类的对象共享
site_url_base = "http://www.xxx.com/"
# 基本构造函数
def __init__(self):
# 前面7条是IE,所以大概浏览器类型70%为IE ,接入类型上,20%为移动设备,分别是7和8条,5% 为空
self.user_agent_dist = {0.0:"Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; Trident/6.0)",
0.1:"Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; Trident/6.0)",
0.2:"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; .NET CLR 2.0.50727)",
0.3:"Mozilla/4.0 (compatible; MSIE6.0; Windows NT 5.0; .NET CLR 1.1.4322)",
0.4:"Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko",
0.5:"Mozilla/5.0 (Windows NT 6.1; WOW64; rv:41.0) Gecko/20100101 Firefox/41.0",
0.6:"Mozilla/4.0 (compatible; MSIE6.0; Windows NT 5.0; .NET CLR 1.1.4322)",
0.7:"Mozilla/5.0 (iPhone; CPU iPhone OS 7_0_3 like Mac OS X) AppleWebKit/537.51.1 (KHTML, like Gecko) Version/7.0 Mobile/11B511 Safari/9537.53",
0.8:"Mozilla/5.0 (Linux; Android 4.2.1; Galaxy Nexus Build/JOP40D) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166 Mobile Safari/535.19",
0.9:"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.85 Safari/537.36",
1:" ",}
self.ip_slice_list = [10, 29, 30, 46, 55, 63, 72, 87, 98,132,156,124,167,143,187,168,190,201,202,214,215,222]
self.url_path_list = ["login.php","view.php","list.php","upload.php","admin/login.php","edit.php","index.html"]
self.http_refer = [ "http://www.baidu.com/s?wd={query}","http://www.google.cn/search?q={query}","http://www.sogou.com/web?query={query}","http://one.cn.yahoo.com/s?p={query}","http://cn.bing.com/search?q={query}"]
self.search_keyword = ["spark","hadoop","hive","spark mlib","spark sql"]
def sample_ip(self):
slice = random.sample(self.ip_slice_list, 4) #从ip_slice_list中随机获取4个元素,作为一个片断返回
return ".".join([str(item) for item in slice]) # todo
def sample_url(self):
return random.sample(self.url_path_list,1)[0]
def sample_user_agent(self):
dist_uppon = random.uniform(0, 1)
return self.user_agent_dist[float('%0.1f' % dist_uppon)]
# 主要搜索引擎referrer参数
def sample_refer(self):
if random.uniform(0, 1) > 0.2: # 只有20% 流量有refer
return "-"
refer_str=random.sample(self.http_refer,1)
query_str=random.sample(self.search_keyword,1)
return refer_str[0].format(query=query_str[0])
def sample_one_log(self,count = 3):
time_str = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime())
while count >1:
query_log = "{ip} - - [{local_time}] \"GET /{url} HTTP/1.1\" 200 0 \"{refer}\" \"{user_agent}\" \"-\"".format(ip=self.sample_ip(),local_time=time_str,url=self.sample_url(),refer=self.sample_refer(),user_agent=self.sample_user_agent())
print query_log
count = count -1
if __name__ == "__main__":
web_log_gene = WebLogGeneration()
#while True:
# time.sleep(random.uniform(0, 3))
web_log_gene.sample_one_log(random.uniform(10, 100))
设置可执行权限的方法如下
$ chmod +x sample_web_log.py
之后,编写 bash 脚本,自动生成日志记录,并赋予可执行权限,代码见 genLog.sh
#!/bin/bash
while [ 1 ]; do
./sample_web_log.py > test.log
tmplog="access.`date +'%s'`.log"
cp test.log streaming/tmp/$tmplog
mv streaming/tmp/$tmplog streaming/
echo "`date +"%F %T"` generating $tmplog succeed"
sleep 1
done
赋予权限
$ chmod +x genLog.sh
执行 genLog.sh 查看效果,输入 ctrl+c 终止。
$ ./genLog.sh
2.流式分析
创建 Scala 脚本,代码见 genLog.sh
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
val batch = 10 // 计算周期(秒)
//val conf = new SparkConf().setAppName("WebLogAnalyse").setMaster("local")
//val ssc = new StreamingContext(conf, Seconds(batch))
val ssc = new StreamingContext(sc, Seconds(batch))
val input = "file:///home/libaoquan/Documents/nginx/log" // 文件流
val lines = ssc.textFileStream(input)
// 计算总PV
lines.count().print()
// 各个ip的pv
lines.map(line => (line.split(" ")(0), 1)).reduceByKey(_+_).print()
// 获取搜索引擎信息
val urls = lines.map(_.split("\"")(3))
// 先输出搜索引擎和查询关键词,避免统计搜索关键词时重复计算
// 输出(host, query_keys)
val searchEnginInfo = urls.map( url => {
// 搜索引擎对应的关键字索引
val searchEngines = Map(
"www.google.cn" -> "q",
"www.yahoo.com" -> "p",
"cn.bing.com" -> "q",
"www.baidu.com" -> "wd",
"www.sogou.com" -> "query"
)
val temp = url.split("/")
// Array(http:, "", www.baidu.com, s?wd=hadoop)
if(temp.length > 2){
val host = temp(2)
if(searchEngines.contains(host)){
val q = url.split("//?")
if(q.length > 0) {
val query = q(1)
val arr_search_q = query.split('&').filter(_.indexOf(searchEngines(host) + "=") == 0)
if (arr_search_q.length > 0) {
(host, arr_search_q(0).split('=')(1))
} else {
(host, "")
}
} else{
("", "")
}
} else{
("", "")
}
} else{
("", "")
}
})
// 搜索引擎pv
searchEnginInfo.filter(_._1.length > 0).map(i => (i._1, 1)).reduceByKey(_+_).print()
// 关键字pv
searchEnginInfo.filter(_._2.length > 0).map(i => (i._2, 1)).reduceByKey(_+_).print()
// 终端pv
lines.map(_.split("\"")(5)).map(agent => {
val types = Seq("iPhone", "Android")
var r = "Default"
for (t <- types) {
if (agent.indexOf(t) != -1)
r = t
}
(r, 1)
}).reduceByKey(_ + _).print()
// 各页面pv
lines.map(line => (line.split("\"")(1).split(" ")(1), 1)).reduceByKey(_+_).print()
ssc.start()
ssc.awaitTermination()
3.执行
同时开启两个终端,分别执行 genLog.sh 生成日志文件和执行 WebLogAnalyse.scala 脚本进行流式分析。
执行 genLog.sh
$ ./genLog.sh
执行 WebLogAnalyse.scala, 使用 spark-shell 执行 scala 脚本
$ spark-shell --executor-memory 5g --driver-memory 1g --master local < WebLogAnalyse.scala
效果如下,左边是 WebLogAnalyse.scala,右边是 genLog.sh