Description
给定一张 \(n \le 300\) 个点,\(m\) 条边的图,每个点有一个初始的颜色 \(a[i]=0/1\),你可以翻转一些点的颜色,最小化翻转的点的数量与连接不同颜色的边的数目的总和。
Solution
最小割模型,对于原图中两个有边相连的点连一条边,\(S \to 0, T \to 1\),边权都是 \(1\)。
#include <bits/stdc++.h>
using namespace std;
const int N = 16384, MAXN = 262144;
#define reset(x) memset(x, 0, sizeof x)
struct graph
{
int n, m, M, S, T, head[N], cur[N], dep[N], gap[N], q[N];
long long ans;
struct ed
{
int to, nxt, val;
} edge[MAXN];
void init(int n0, int m0, int S0, int T0)
{
n = n0, m = m0, S = S0, T = T0, M = 1, reset(gap);
reset(head), reset(cur), reset(dep), reset(q);
}
void _make(int u, int v, int w)
{
edge[++M] = (ed){v, head[u], w}, head[u] = M;
}
void make(int u, int v, int w)
{
_make(u, v, w);
_make(v, u, 0);
}
int dfs(int u, int mx)
{
if (u == T)
return mx;
int num = 0, f;
for (int &i = cur[u], v; i; i = edge[i].nxt)
if (dep[v = edge[i].to] == dep[u] - 1 && (f = edge[i].val))
if (edge[i].val -= (f = dfs(v, min(mx - num, f))), edge[i ^ 1].val += f, (num += f) == mx)
return num;
if (!--gap[dep[u]++])
dep[S] = n + 1;
return ++gap[dep[u]], cur[u] = head[u], num;
}
void solve()
{
for (int i = 1; i <= n; ++i)
cur[i] = head[i];
ans = 0;
for (gap[0] = n; dep[S] <= n; ans += dfs(S, 0x7fffffff))
;
}
} g;
// init
// make
// solve
signed main()
{
int n, m;
cin >> n >> m;
auto id_source = [&](void) -> int {
return 1;
};
auto id_target = [&](void) -> int {
return 2;
};
auto id_vertex = [&](int x) -> int {
return 2 + x;
};
g.init(n + 2, 0, id_source(), id_target());
for (int i = 1; i <= n; i++)
{
int t;
cin >> t;
if (t == 0)
{
g.make(id_source(), id_vertex(i), 1);
}
else
{
g.make(id_vertex(i), id_target(), 1);
}
}
for (int i = 1; i <= m; i++)
{
int u, v;
cin >> u >> v;
g.make(id_vertex(u), id_vertex(v), 1);
g.make(id_vertex(v), id_vertex(u), 1);
}
g.solve();
cout << g.ans << endl;
}