C#动手实践:Kinect V2 开发(2):数据源工作原理及红外源Demo

Kinect体系架构

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAoYAAAGMCAIAAADIm/TVAAAgAElEQVR4nO293VMb1/6vuf+EczdXM3MxVXMzNTVzpk6dU3M7NafmZigoU1RInFB2qLjCOG+u+DiJ4x3/iEMcO3b8Fm8SE7+b+I3YMZs4NkYghAAZDMiAhLCQQAgEQkKyQNBISPRcLO3+dfqNbq0GNa3Pp54LEAvR3d9GT/fq1av/xiIIgiAIUuj87W9/+1uhlwFBEARBECgZQRAEQYwRKBlBEARBDBEoGUEQBEEMESgZQRAEQQwRKBlBEARBDBEoGUEQBEEMESgZQRAEQQwRKBlBEARBDBEoGUEQBEEMESgZQRAEQQwRKBlBEARBDBEoGUEQBEEMESgZQRAEQQwRKBlBEARBDBEoGUEQBEEMESgZQRAEQQwRKBlBEARBDBEoGUEQBEEMESgZQRAEQQwRKBlBEARBDBEoGUEQBEEMEf2VXFprATsFFNRkoJoAUELtQKpAyUUNCmoyUE0AKKF2IFWg5KIGBTUZqCYAlFA7kCpQclGDgpoMVBMASqgdSBUouahBQU0GqgkAJdQOpAqUXNSgoCYD1QSAE*gVKLmpQUJOBagJACbUDqQIlFzUoqMlANQGghNqBVIGSixoU1GSgmgBQQu1AqkDJRQ0KajJQTQAooXYgVaDkogYFNRmoJgCUUDuQKlByUYOCmgxUEwBKqB1IFSi5qEFBTQaqCQAl1A6kCpRc1KCgJgPVBIASagdSBUoualBQk4FqAkAJtQOpAiUXNSioyUA13/neZnGGCr4YYOdC7UCqmEfJFmfo3TP2Tdvsv9iry5/bf7G3yT5VUddR8B2IBiMXNL+itPQFlYuy/2KviT+yt62an/z83OIMvXHcKtfgRtuE3I9+eOC69HicfP3Wic4m+9T7F3r0WrD3znXvlJ32hweu/vFIMLISWlx1jC3ctU3uOd1V8KXSxI22iR+bxwq+GPpCq0C6mEfJLMu6A/Fdx9qV23x5fVDrO+861v7WiU7BizfaJliW1UvwBdxohi1oHnx5fZBl2WbH9KZt8njzN45bjX8Etm3VfOO4NZPdOHF/RPKn71/oYVn2ne9tkj/1zy1zSv7q5hDLsjp+rO8IJVfUdTh9i6HF1V+evPrq5tC3d4fv2ib7xyOHLvcLWsptQyPwzve21Ho2tpxS/tTdceTtPl1iKiUzqcxtq1+5TR5KHvBGz/3uFry461i7jof2Bdxohi1oHhDdJpn1b+8OK7fJ481Di6vvnesu+Doqs53VdPoWWwdnJX9EDlh/eOAS/2jP6S6WZflbUt/j2h2h5D9fzGx6/kA2o5F7dC49Hu8fjyRW0rWNzoIvjI7kLz89Yiol//LkVWo9+9XNIYU2eSh5ZDImVrI5MHJB84Do9tLj8cRKWu4qRt5KDscZKJnPL09eRRNrkj9yB+LuQNw6PCf+0bnf3cHIytZtAeMredexdiaV+fzqwKYtb1v9Rlayf27527vDf76YsY3OF3xhdIRGf/QxlZK/vD5IPibkentYKFm0QQxb0DzgdOsYW5A7C4GS9YL0Tn9Y7xC8/s73NtKnnVhJi3/LOjzXZJ/aui1gfCWTJVTTN2BkJX/y8/Mks15R1/H51YHUelZ8aW/nkr/89IjZlFxaaxnwRge8UeU2gn2r2THtDsTDcWbAG+X3eVqcIYszFFtOuQNx8jU3aGX/xd6HPQHy9V3bpNyp+bd3hwXjXN44bm1s9w14o+TPXW31FvBKjJELmgecbt/53hZNrElexZBT8nvnupsd055gIrS42u0Kc7sBGcFrcYaYVKbbFSZfK3SMF5ZtrmYwsiIexvVj85jTt/jGcWtqPSu+OJpYSQv+By3OEP8Ymnz7xnHrL09eOcYWwnHGHYjXt3gkF+Dc727b6HwwsuIJJm5b/e9f6FFQ8rd3h63Dc/65ZTKc6kbbBP9f76ubQ3dtk+Lfum31i0ddkWvA5OuKuo7Gdp93dikcZxxjC788ebWpn2LLqautXoUGpMuaLCrZ5QRuVl4X/pZ894zdOjwXjKwI3qG+xdPtCocWVz3BxMOegNaL1s2Oae6yRWhxVa5AXHFrG53NjulAOOmfW24dnBUfkahvmccG1wSN/uhjQiWTj2PJPZ4VKdk6PBdbTjW2+47dfvlhvePS43EmleF2r3O/u0k/W+vgLPmau2ry5fXBcJwhX9+2+p2+Rcml8s4ucSNZSmstH9Y7AuEk+Uz/sN5xqmnUP7fs9C0WatyQkQuaB3zdkoN38RGYpJK/ujkUW0412ae+ujn0yc/P61s8seVUS1+wtNbyxnErKX1iJX211Uu+/uTn5wVf2fwKqu+fa7JPjUzGBC+ST8nSWsuANyo4Kjp0uZ9JZQTyYP96aZll2fcv9IxMxpod06Qc5L9S8FZvneh0jC0EIys/No998vPzL68P3rb6w3GmttEpXs23TnR2u8JEhJ9fHfjk5+c/No+5A3Hv7BI3ImT/xV5WNCTtrROdmeyGoJOM9DyTX9x1rN0diHuCiR+bxz6sd3x7d7jbFd60U9riDAUjKwoiqW10nvvdTTp7yC7HLYOadeFvSf/c8m2r/9OGPu7S/lsnOvvHI55g4lTT6If1jmO3X5JDH/WDY3Yda0+spLnVvG31uwNxuR3yvXPd5BPyhweuD+sdX90caukLMqmM4Aq0ypb5bXBN5Cc+vWJCJZf+6+P404Y+hTaEq61ewT/GqabRJLPOv7tDsuOar2RyYC6+ePnJz8/5XTq7jrWHFlf5hi6ttVTUdfjnlslHWEE2mmELmgcC3d5omxBfxRArec/pLvG1vXfP2JPMOv8kDx3XYj6/OpDJbvD/WSrqOlLrWfK/cOnxuCeY4LdvbPeJrzuyIiW7A3HBWO5Dl/tT61n+2arFGRrwRgV3YX1Y70ispMWr+eeLGU8wIdgTdh1rbx2c5R9ShBZXBUPSfnjgSqykBcv81c2h0OIq+fpU02hqPav1FHPP6a5gZCUYWRH3IvCR7LhWuS5kSzbZp041jQreweIMWYfnBAdGFmfIMbagcvlP3B/hPv1K/3UJQ9LoLMs2O6bF3Q/1LZ7ESpr/2auyZX4bXBN5eU+3mFPJpbUWcsgs0C2r4loyOQDk/6tsquTSWovTtyjuwWt2TPP/o8797vbOLon/4rd3h2PLqUJtNMMWNA8Eut11rN3pW+wfjyi0Ka21WJwhyfum7tom+Z/FULIY8s9y7PZL7pVv7w7755bJ1++d685kN/j/g+ScT7zMAiVLDhfyBBPc4eyH9Y7UelbSAXdtk4LV/LShT67xWyc6+ePzmx3TgiFpjrGFq63eJLPOFxjfHI3tPsEOppK3TnRanKFMduNhT0Du9m6xktWvC9mSgkOi0lrLJz8/jy2nxCfoe053pdazKke/949HBO50B+KS3f4sywbCSclrc/655cZ2n9aWeW9w9eQnPr1iWiWTj+NuV1ihjRz+uWX+oaUaJZ9qGhWMI62o6xCo3RNMSJ4Nv3Wik2XZgswSYOSC5oHkGXBsOcXf7GJtsywr2RH95fVBfk2hZEmsw3N/vpjhvm0dnOV/zgYjK9y/ErmVWXx+w4qULHm7s8UZ4saFPewJCP615epbWmtpsk9Jjv0m8DX81c0h/pC0iroO0mEWCCf5/8ihxVWuT+XzqwMCYWvi2O2X0cQa6W8X/1SsZPXrQrakoE9O3IaP4HNPjj2nuzLZDYG861s8ksPvWZaVGxt7tdXLH/SjsiXlBldDXt7TLaZVMtl1Eitp/rgDcRvCWyc6T9wfudE20To46w7EU+tZ/s6hRsnkv5f/f3vi/kggnOT/SpJZv2ub5K4M8WFSGeUurALufIUqaB7IXSfOZDc46Qra7L/YSy4Wirna6k2tZ7mWULIkp5pG+f8IseUU//imyT7FSeXE/RHxSVuplJLFo7hL/+onx9gCX/x8xMO7yOgnueWvb/FwSyW4Penbu8PkhKzJPsVdyd5/sVfQp+UOxP1zy3ncykF447i1yT6VyW6Ij9fFSla/LmRLioedDnijttF5yR3eO7uk8OYcV1u94t4+Mm2I+M+xLCu+gMjtD/xDXvUtKTf4puRpPp1iZiWX1lpqG52p9Sz3GSFu88nPz92BOJPKjEzGWvqCvzx5dez2S//cslYll9ZaWvqCZEAQoX88wj9EJTMk2EbnufGTAgoyEZiRC5oHcqOpm+xTocVV0j0oaPPVzaEksy5XFP4HIpQsCTn3JXvv51cHuIusXEU4gf35YkbSo6xIyZLbme+nQDgpd0YlVnIwsqJwE+NXN4f4/8i20XmuA9Y6PEemFfvy+iCnOnLgzn+HXcfab1v9SWa9fzyS97i/2kZnJrvBvwRQKqVkTevCSh3chBZXRyZjcnu7mlsJgpGVaGJtZDImgEllxFe+5apZWms5dvulYGlVttRlgyuQn/j0ismVXFprabJPBcJJ8nEsaPNpQx+TyvzwwCXoBvEEE3ko+dOGvsRKmoydfveMnUllxFeyJQ//C4iRC5oHckomozRJf52gzSc/P5e8fVYMlCyH07dIbnC4a5sUXJXfdaw9yayTs59wnJE8DWK1K1lwIwMfsZLdgbhc49Jayw8PXNzFb/ItOQUkS0662cnZM/naHYhLdjK/872t2TGdWs8qTyCovBkF47PESta0LpJbcmQypvAOm0LG2UmeZN+1TTKpjOC6OCsz7Ku01nLp8Th/nLb6lnptcDnyE59eMb+Sdx1r9wQTZM8WtBmZjEnOWpBk1vNQcmmtxT+3TC6DSc6EF1pcNdr9rEYuaB4oTANCRlCf+90taEMu5Ku5rxFKluOXJ6/ITYDByIr4dhTb6Hxju0/c38tfZq1Kto3Oc7MCCCCTZvNfaR2cVZj2/K5tkn9Zmsxzsud011c3h/h3Nna7wqeaRt/53kbmx5B7N7J35dfjdbXVK/hIEStZ07pIbknld9iUP1/MyF3F33WsPbacEnxUsiwrOPXnEIx+Vd9Srw0uRz7a0y/mV3JpreW9c91JZv1U02g0scZvE02siQeSfPLzc/avAw2cvkXxjfCSSiaTvpbWWiRvbyC91oXaPnnvfAVfSPUoz8z17d1hco+joE1ocVXN7GzhOGP8p4wUpJrvX+hJrWfJDUjicTc/PHCRMzO5CbFZ7Uq+2urlnw4KmglW84cHrthyStKj5L5EwUVcMiy8dXCW/zCMH5vHLM7QDw9cckLiGPBGJcceb8ovT14JrtGK7xnTtC6SW7K+xRNaXM1veBQZMaNwXtHsmBbfiCV58CR+K/Ut9drgcuRpPp1SFEourbV8e3c4yawnmXV+G+/skviyUP94RPAZ/eeLGbFKJZX8zvc2JpU5dvulYGAXgXxySV78KNTpl5ELmgebTpbZ7JgOxxlBm3O/u0OLq+IT5V3H2vn3mgsuZxiTQlUzGFlxjC1ISpcM/BmZjMk9NorVruS3TnTGllPiN3z3jD22nBKs5q5j7YL7bTgk/XSjbYLMIMS/CeLdM/ZoYs06PCf5LA0+4TgjN/SMWx7JF92BuMBJp5pGBZ8kmtZFcksSc0tOtrXpp9CpplHJoy4Ocj7D/69hWTbJrIuPZW9b/WJ5q2ypdYNrJU/z6ZRiUXJpraWlLyhoc+53N7kuQq5/vHeue8AbrW10Cnqqf3jgiibWPqx38J/+JKnk0loLmd5P7mpNY7uPSWVONY2S49xdx9o/+fn5gDfKv41kmzeaYQu6Kcduv3QH4vzPzU2VTD7RWNFH9oA3Glpc5To23jhurW108m/gKa21NDumB7zRPae73jhu3fTJ3IWiUNVssk+xLCt3KkPuYpC7+5bVruTSf00ZUd/i4f6VyMBMydm7Pvn5OREqV7h3vrc12acEtykS9l/sTTLr4ouXgXAymlgTHLqReyi4ESSN7b4ks648DdaX1wfdgfipplGy61bUdRy63O/0LXJDXjjIjd1kGDPnKvXrIrclaxudZDY0bl3ev9Dz54sZyRMJPk7f4qad3uK7jcm/0on7I2Qr7Tnd1eyYjibWBPZV2TKPDa6V/MSnV8yj5HCcUb6PqKKuY2QyJmhT3+JJMuup9Ww4zjh9i+Qj2DY6zz8A33WsvdsVZlk2sZLm3Hnocr/kHHJkZh/lqfIC4WQmuxGOM6n1LBk7Wqhpro1cUAXI5iI3KfFHzH1+9QV3nMTfpPyv/7+LvdyoYP7rNy2+aGKNSWXCcSaT3fAEE+SjkGuz53TX5NxyJruRWEkb9nS5UNU8dLk/GFmRu8j6y5NXCg8LCscZ/iGO4Fv+mwhOIj9t6PPOLpF/3mhizTY6v/9i77tn7JLHymRqjsRKOrGSji2nksx6tyssNxmA5KzaklOPkeOATHYjmlhjWXZkMiZ3Jw/HO9/bHvYEyCxjJImV9F3bpOSHxtVWbya7waQy/I56lesityVLay1kytLUepbs87HlFN/QcostN0CPz6XH4/xr8CzLvneu+8N6x4A3mmTWo4m1JLNuG50XL63KlnlscK3k5T3dYh4l0/DuGbvcITyHvk+wf+O49b1z3YWa2ppjhxb0yh9jZBjRgUt9wbkE+Xr/xV76r9/53vb3G4MKbWobnbuOte+/2Cs3z77BC1rwJdSdiroOTZ0W73xv031anrdOdObx70x+a9OhhbuOtcu1oVyXXcfa3zvXvelHHw0s70xdcCUo75Z5b3D1y1zAQMlFzQ4t6PX/94Px2y3nfne/ans+99/9jwX5+nr5pwXfDnkUtOBLCIoKVv5u47xbbsMyFzBQclGzQwv6xpctzv/5P7u/PjP2P/3H9z++UZCv9/y3+wXfDnkUtOBLCIoKFkrWGCi5qNm5BX3jyxbLf/x/iBcL9bUB2aHVBGaFhZI1BkoualBQk4FqAkPBQskaAyUXNSioyUA1gaGwOEMqn22svuVWQ+1AqkDJRQ0KajJQTQAooXYgVaDkogYFNRmoJgCUUDuQKlByUYOCmgyzVvON49avbg5dbfX++WLmlyevahud4ntSP/n5OZmt9q0TnSqf71Lf4pG7frnndBe59fzbu8O3rf7bVn9ju+/E/ZE8rnd+e3dY8Fsn7o802aeaHdP1LR6tM0+p2RQ68s73NsEconIL8GG9gz8rOMeX1wcln51lWKgdSJUiUvK3d4f5zzMGpTtcyV/dHEJBBezcaipAJmx62BM41TT65fXBX568sg7PieeKv2ubJJO6fHVzSOWkx032KbknFjS2+8hT/yzOUOvg7Lnf3eShMomVtNZZYizOEDeP7xvHrZ5gwjG28MMD17d3h5vsU/xJW/XaFDpytdXLnx5YYQEq6jpCi6uCR4GRF/Wd8HKroXYgVYpIyd7ZJZZlxQ+PK2Z2dEGdvsVMdgMF5bNzqynH1Vav07eoZn6u/vEImYjqRtuEytOyD+sdkrNvlvKexWlxhvjzp+453ZVaz2qaL4yv5Ja+oODBU1uxKXTEP7fMTe+16QLUNjr9c8v8eWrv2ib1fUzTNkCrQLoUi5I/rHeQGVPlnhBXnOzcgr53rptJZVoHZ1FQPju0mnK8d647tLiqcsZH7nlBjrEFNQ/AJnhnl8RHdV9eHxzwRsnXAiWX1lr6xyOaHnzOV3IgnMzvVh9Nm0IvahudXEeUygVwjC1wvQjvX+hRmPncsFA7kCrFouSHPQHr8Fxto1P5CeTFxs4t6G2r3zo899XNISaVQUE5dmg15bAOz23ar0ueb28bnQ/HGYszZHGGYssp8oWaBxL88uSV+PKHbXSe+7tiJQ94o3mfJat5vGPem0KwXsqP4VHTxjG2wD3WReUCvHeuO7acIodEjrEFTccuBoHagVQpCiXvOtYeW059dXOIfKFpzzY3O7SgpbWWcJzhCprfZ5wp2aHVlCO2nNr0eOu9c93vnev+5cmrG20T753r/urmkHV4jryo5ljtne9tseUUv6/1rROd0cQa97sCJZOHt2paC76Sj91+GYys5HGirGZT8Llt9Ss/rHbTNu+esfOf6aR+Ae7aJv98MVPb6OR6GnYW1A6kSlEo+djtl9HEGvmvI0+9lWx2o22CdGF9WO9obPeNTMaCkZVuV1h8oKe+ZWmt5du7w07fYjjOjEzGblv94md0G3znK/hCivny+iC/oPwPDj4/No+RigjKJD4mU9+SFHTAG92hBS34Eqrnne9twciKysbNjmkyyOiHBy7Jcb8K9I9Hjt1+yX176fE4/6nAFmfIMbZw2+p/2BMILa42O6a19srwlVxaa6lv8SRW0nKPVKffFAR6JTfZp7hn1GpaADKkKxBO7qxRXRzUDqRKUSi52xXm/sc++fl5Jrsh2e80Mhk797v786sD/rnlS4/HP23o+7Sh75cnr5hUpsk+lV/L21Z/OM40tvs+rHfUNjqbHdN5D+4o1M5X8IUUY3GG+AVlWVayoBZn6LbVTx7l+8uTV59fHfi0oY98IAquQKtv2djuiybWGtt9nzb01TY6H/YEdlZBC76E6jl0uV/uYEsMd+bKuVk9J+6PWIfnuG+9s0v8h3BzI65vtE209AUHvNFfnrzSdE1XoOTSWst757oHvNGRyZjK02WVm6KiroN0D7x3rrvZMX2qaZT7lusGUNOmtNay61g7f6CWplqU1lqcvsWdeBWZQKtAuphfye98b0utZ/n/pYFw8mqrV9xyZDL2sCdgG50X/L99WO9IrWf5/1QqW75x3MqyLP8A3GjsxIK+cdwqLqjkTS/kEmO3KyyYqG//xd4ks87v0lDZkhTUyBc+dlw1FVBzZnbb6h+ZjI1MxpLMuuAL9aehFXUd0cQa+V/+5OfnnmCC/1PxteSWvqDKm6y4d5A8Gf2xeSy0uLrpFV+Vm4IsPFn3kclYOM7455a5b7nHKqtpU1prOdU0Su4B07QAhBP3R5y+xYc9Af477CAoDUgZ8yv50uPxQDjJf+VG24TgFcLIZCyT3ZDsbLlt9fMPElW2/LDewaQyBd8ClDtfwRdSwI/NY+KChhZXxS0tzhDLspLnTLetfv/cstaWH9Y7MtmNbR71qm9BC76EmhBc5ZXj0OV+0ju161i7ppM5jtbBWTIioaUvKLjtWKzkd7638XeeTZFTcmmt5VTTqGNsQcdNwUHZcS0wtPoFeOtEZzjO7L/YS77YiX3XlAakjPmV7J1dutE2wX/l3TN2lmXFozFHJmP94xHJN3n/Qk8mu5FHy2hibdN/DIPvfAVfSAHuQFyyoOJbWSzOkNxInPcv9LAsyx/Co7JlOM4YeRDpjqumMhZnSLJDS8AvT16Ronzy83P+ZWD1fH51YMAbrajrCMcZwSGXWMmltZYks67+zZ2+RbkO6oq6jsRKWsdNwUGj5A/rHd2ucH4L0NIX5G5E/uGBK78jpMJC5T/qmFzJH9Y7WKkLjU7fovjOh5HJmOBKMMeuY+0sy3IDedS3vNrqTaykz/3u1nSEa6idr+ALyYcIUrKg4huULc6Q3PRegjKpb/lj81iSWd+5BS34Emrine9tas60uCsOlx6PcyOSOMiF0k3/Vmhx9dzvbsm9SKDkL68PcqZR8+YKt/OSWwbUvJXKTcFBo+SWvqD4AFfNAhy63B9aXOVfQh6ZjBn5Qo8kFPbTISZX8sOeQGo9y10s4V9ESaykBZ+qZNCWQp24E2v1LUtrLaeaRkOLq6HFVfGHRcHZcQVtsk/JFVR8gzIZtKWmTOpbltZavro5FIys7NCCFnwJtVLb6AzHmUuPx/nFff9CD79blTszvtrqFR+uWYfn1HRs3Lb6Y8sp8ZVdvpLfv9BztdUbCCe5axybvvnVVi9f8788ecWtyFsnOi3OENfls+lbqdkUHF9eH9z0WEGyDZnyM48FICPCBPOm7b/YG02sqZ+5xQhQ+Y86ZlYyOQJtdkyf+90t4MfmsdR6VvAPoDAkhHSNcmN/1LfkluSXJ6+SzLrTt2iQZ4Kq3/kKvpD8zRhNrLX0BcUFPfe7m0llBDcoW5whucn8BGVS35JbknO/u8NxZscVtOBLmAfvnrGTmUAC4SS5ZtQ6OKtyrDLpi1bTpfH+hR7JixcPewLhOEPwzy1bnCHuTyu8+btn7IFwktxKxz9FbukLemeX/HPL3tmlYGSFu26tcjlpNoVKLj0eV5jEW2EBfnjgsjhD4l+5bfULrjQZHCr/UcfMSj52+6XC1E620XnBwIqRydifL2YkG391c4h/9Uh9Sz57TneFFld31j0zhipobaMztZ6VU2Dr4KzgwpXFGRJfEpMsk/qWfN460RkIJw31cbODqpkHbxy3ar2v5qubQ/ldXaZ/83e+t8kt7RvHrYKubK3LmcemUIk7EFczgHHrFqDgUDuQKmZWcrcrrDABcm2jM5Pd4H++k/5PyQPVbleYfwCovqWA+haPOxAv+JbRtPMVfCE5xEdRfD6/OsD+9TKzxRniT8OkUCb1LcUF1TT4tuAFLfgSbjOtg7Nb96AkHd98S5dTPZ9fHcDT1WgVSBfTKpncjqwwwIH0gvLPWUcmY7HllPgs9vOrA0wqw/+sV99SgMJUU4bd+Qq+kIS3TnSKrzUIILOycN9anCEmlRH3SH9+dSC1nuUPVFHfUlxQ7+xSwTeO+oIWfAm3GcnrrAZ88y1dTvW8daLTyPf4bQ/UDqSKaZV86fG43GPXOJrsU/zP05HJ2I/NY+5A/GFPgJw9V9R1fHt3mIyw5f+iypanmkbv2iZJgzeOW4/dfplk1g01JmhnFVQ8Ik/Abauff4MyuULsGFv488WMoEyCoQAqW55qGuUqzhVU6/SNhS1owZcQAIND7UCqmFbJ3a7wphf53r/Qwz0VtfRf46jfOG61Ds/FllPRxFqSWfcEE+JTbZUt37/Q4xhbYFk2mlhLrWdDi6tGux9gZxVU7sYzQUG5DkAyjvqN49bWwdlwnOHK9NXNIcEvqmwpKGhsOaVppmIjFLTgSwiAwaE0IGVMq+Q8ENza9O4Zu9z4BfUtS2stu461v3eu25i3AZi7oIJbm/ac7pIrk/qWpf8qqKEGWnOYuJoAbA/UDpV4CWAAACAASURBVKQKlPzvKN9tnF9Lg2PugirfbZxfS4Nj4moCsD1QO5AqUPK/AyWbrKBQspmqCcD2QO1AqkDJ/w6UbLKCQslmqiYA2wO1A6kCJf87ULLJCgolm6maAGwP1A6kCpT879xomxBPtk7Z0uCYu6A/No+pfGqT+pYGx8TVBGB7oHYgVaDkogYFNRmoJgCUUDuQKlByUYOCmgxUEwBKqB1IFSi5qEFBTQaqCQAl1A6kCpRc1KCgJgPVBIASagdSBUoualBQk4FqAkAJtQOpAiUXNSioyUA1AaCE2oFUgZKLGhTUZKCaAFBC7UCqQMlFDQpqMlBNACihdiBVoOSiBgU1GagmAJRQO5AqUHJRg4KaDFQTAEqoHUgVKLmoQUFNBqoJACXUDqQKlFzUoKAmA9UEgBJqB1IFSi5qUFCTgWoCQAm1A6kCJRc1KKjJQDUBoITagVTRX8kIgiAIguQRKBlBEARBDBEoGUEQBEEMESgZQRAEQQwRKBlBEARBDBH9lWwtKwE7BRTUZKCgAFBCJ0DaQMlFDQpqMlBQACihEyBtoOSiBgU1GSgoAJTQCZA2UHJRg4KaDBQUAEroBEgbKLmoQUFNBgoKACV0AqQNlFzUoKAmAwUFgBI6AdIGSi5qUFCTgYICQAmdAGkDJRc1KKjJQEEBoIROgLSBkosaFNRkoKAAUEInQNpAyUUNCmoyUFAAKKETIG2g5KIGBTUZKCgAlNAJkDZQclGDgpoMFBQASugESBsouahBQU0GCgoAJXQCpA2UXNSgoCYDBQWAEjoB0gZKLmpQUJOBggJACZ0AaQMlFzUoqMlAQQGghE6AtDGKkm0V5T17qjZt49hXreOmt1WUF6TkneVlyitC1pTDvrtyi7bJ1hW0IBRkLzIUJitowemt3ttVWSH3U/vuSrnPEPI/3llexn3Lfa2ersoK/ueAwn7bW71X0FKAwmcIEEAnQNoYRcnOI4c3MpnBQweV2+T9/mIWuu1r0UhBSj525jTLskNffKa8pvykE4mY0zlw8IC+22TrCloQyF6ksGHpt5jBMVlBC058ZHj64QO5n85Z2sbOnJb80cg3X2fTKU7YS17va7dL61/3nD8rqF02nVr2+4ZrjwpaMuGwctGn7vxa8I25U1DzT7R1MZCSWZZlwmGFo7m8P0yn7t0Rnzx5zp8t1G4aczqZcDjU+lTlmvbsqRr64rM5S9tGJjN+8YIu20T9zleQTZQfW7oX+W9cf3Hg44KvozImK2jB8V27sjITlPxRZ3lZOpGYt3ZI/nTmj5bFwQHuW/+N66/q/6H1r3vOn2XCYe7brsqKFwc+DjY/2shkvJd+UvjF+Miw5/zZgm+9HUq+6tMnxlJyfGR4oduu3Ca/TWycvkrHvupsOjXyzdcZhpHr9ZJb04nLDRmG4a8LlCzebjGnM+LoVW6Tx5sz4bDzyOGCr6MyJitowenbXyP36TH0xWfryWQ6kZD8xdVQKA8HCxAomeNV/T8yDNNbvVfuF6FkGvITn14xlpId+6rXk0m5XdkcSp6682u4y9ZZXrYWjcj1eimsaSoe4/8WlCzebmQvmrjcoHXbKgMlFydycp1++GD64YNsOiW+nOTYV63LZ46ckq1lJevJpOvkd3K/CCXTkJ/49IqxlGwtK3Gd/C6bTvV/9IFCGzG91XtHj9e5T53k/yI3SIpl2aEvPhMMc7Dvruyu2m0VDcQQ0F21mzTjY99dOVx7dOzMacnlVIYJh0e++dpaVjL98EHM6VTeGmJeu138/nYoWXK7kb1Isp9ZYYtJlpXsHo591WvRiPvUSYMPljFZQY1AsPlRtL9P/PpqKPTy6JGY0znZeEvwo1f1/xB0d3dX7ebvM/xv7bsrXSe/Gz1eJ3lxTU7JS16v/8Z1uWWGkmnI03w6xXBKtpaVzD55nAxMiQc6Sn6Yjh6vW/b71pPJmNMZ7e/LMMzsk8fEr4OHDjLhMBn4sBaNkK+5k6epO7/OWdqsZSW2ivJ0IkE0KWY1FOLv3J3lZcHmR+vJ5Gu3K+LoTcVjS17vpqN8+auQTiTI4r048DHLspK9TwraWPJ6+ed/ULLcdpt98ng1FFK5F3WWl00/fJBhGFLWtWhk2e8jZzm91XvJnrORyaTiMcFeZDRMVlAj8PLoEfE1pr79NRmG6Swv8127Ih63Fe3vC/x2n//KnKWNfyRNvu2qrIj2963MBBe67ct+30YmI9ivlM+S3adOyi0zlExDfuLTK0ZUsq2ifNnvm33yWKENx1o0wu/A6a3euxoK+a5dEWxicScSp2RrWUmw+VG4yya5VOvJJPff2Flelhj3RBy93HlzZ3lZ4Lf7a9GIyvup5ixtweZH3LfLfp/4EFtuTcmfyzAMf7wllCy33cheJB59I7nFFgcHBGWduncnFY/xz2zQcV2c2CrKMwzz8ugR/ouTjbfIrvW8Zt9GJsM/8iP/pIJdRULJ9+4sdNv5Wh2uPSr4RTklk+HcCmcCUDINeZpPpxhRydZ/HYQKDgMlP0zFp0FjZ04L7m5iN1Ny/0cfZNMpcW/knKVt5o8W7lvP+bMrM0GxfeMjw2pOm7oqKwRXnnzXrqyGQptuDf4yCxYASlbYbmQvEnw2ibeY+9RJubLyP0ah5KJlodsuOOt97XZxn06roRD/rIAcxwsuhImVnE2nxNYUXMySVPLQF5+l4jHBWYcAKJmGPM2nUwyqZGtZief82fVkMo/RxeTiMf8Tlt1MydaykiWvV3B/UVdlRYZh+JcVmXBYckjF2JnTiXHPpgs2fvGC4ApTb/VeyftoxWtq311JelYFt25Dycpbw3P+bIZh+vbXKLSRKytRNb8ZlFyceM6fTQamuG979lRl0ynuZGD64QP+DY2B3+6Lu9zESl6LRsTjV4hu+X93PZmcuvMrYeaPlvjI8GoopNBlTYCSachPfHrFuEq2lpXMWdqWvF5ux1WjH8e+6pFvvmb/6mBWhZJf1f9DcE1o/OIFvmh79lSxLCs5rmfw0EH+P5Icr90ucTd1zOkU36DM3RJGIJfDY07n85p9arabvjufXjv6NiC3Fy37fdwhmqBNd9VuubKSvhPuWyi5aCH/+9ywj/GLF/j3HL88eoR/Lrvk9Yp1KFay5H165HSC+5YcUM5Z2uYsbfGR4Ww6tTg4oGYWMCiZBs3O0zWGVnJXZcVqKMR1GcnpZ7j2aLD50ZLXm2GYVDz22u1itSvZvrsym07xnffa7eLv1sO1RzcyGTK6R8BaNLLpipMbHMfOnHYeOcyHnPsKek3JmnrOn/WcPzt25vTgoYPiUd/K20THna9Q/xj67kXc0ARBm8FDB5XLyl2xg5KLmcS4h+tFizh6+T1q5OIx6Ykh8hb/t4qVLOgJJ4iVzJe9fXdlYtzDv5QmB5RMg2bn6RpDK9laVvLiwMfZdIoMaBK36a3e+9rtIpdyXxz4mOtKYrUr2VpWMm/t4P5t+vbX8Ad2WctKRo/XMeGwwiyyyisY+O1+hmEkP/o3MhnBDcrqRQslq9kaZC8ivdOCNuQUR6Gs3EkJlFzMTDbeIrMY2SrKxUOrFrrt5OKu3DUsyRHX4mbKSraWlTyv2Sd3dx8fKJmGvLynW4yuZGtZyav6f6TisZ49VeI2iXGP+GCTHKjmoWTnkcPcP0Dgt/uCo9EXBz7eyGTyWzsyMYjcHHih1qeCG5Sh5PxQ3ovI0ARBG8e+apVlhZKLmYGDB8hdT6PH68R3PXnOnyVd2fPWDsl7KPRSsrWsJNj8SGFyOgKUTENe3tMtO0DJ1rKSiKOXPHSB34ZcBRRfXh2uPcrmpWRrWQkTDg998RkxqGAakK7KCpZl85vleLj2aDadkut8HvriM/avNyhDyfmx6V605PUOHjooaLORyagpK5Rc5KxFI84jh0OtT8VzdJABX7aK8lQ8Jp7My6qrksltV8p7LJRMg2bn6ZqdoWT77komHJ5++ID96/kNy7L8wbSExcEB9q8OTicS4g9TSSVPNt4KtT4d+eZryd6niKNX/CtqCHfZlA9smXCYf3ANJeeHmr1o9sljQZs5S5vkXekCVmaCo8frCr6OypisoIYi1Pp06t6ddCIhPg2wlpUkxj2+a1fkhnnqqGSrig8iKJmGvLynW3aGkq1lJQMHD2xkMoI2qXhM0L3sv3Hdf+M6+1clCyahJEgqubd6byoem7d2SO7Q5EKO+EdjZ07LTf5lLSvprtqdTaeUP82n7vzKv0EZSlaDfXelYAKH/PYicoojnsdYUNbFwYGpe3cKvtbK7OiCGpyRb75OJxJyD4aabLyVTiTkHu+mr5LJmETJIwMClExDfuLTKztGydayEuJa/itkrjtyfDpxuSHmdBLLsn9VMrm9b+aPlql7d7iBVJJKtpaVLA4OpBMJudm4hmuPpuKxxcEB37UrnvNnpx8+SIx74iPD4pN1Du+ln7hJNOV4XrOP5T1BGUpWw9S9OyzL8m/Uzm8vspaVDH3x2Vo0Iijra7eLX9bR43Xivcho7OiCGhwy1Y/cYRm5rCb3KAh9lWwtK3ntdikMvYaSacjDejrGKEru2VOlZh8SfxT2Vu8lcvVdu8J9gHrOnxXM6jV6vC7Y/Mh/4zrX5sWBjyWfdd//0QeCcy8B3VW7xy9emPmjZc7SNtl4S/JN+DiPHFZ+Q4Lr5Hfc9SGVW0NTy7x3vrzffOsYPHSws7ys/6MPpu7dGb/4I3e44/2lYfzH89w+wL0u+Npz7oz4dW/Dz6/qL5KyRnp7Ro7VitvMtPwz+M9mshcpHIQVkB1a0J3CyDdfKzwSUfyxwzH0xWf8q7+Cbzm6Kiv4/87Pa/bJOb7/ow8UJgwZrj2qcA4NlKETIG2MomRQEHZoQSfeqw5bO8gjQF4f+m8F+Xrir9OoGYQdWlAAjAOdAGkDJRc1O7Sgw//nf0n87//bytTk6//6f8/9D/99Qb52/6f/o+DbwTQFBcA40AmQNlByUbNzC+r6z/+J+Q//YeJ//V8K+LUB2bkFBcAg0AmQNlByUbOjC/r8v/5fBf/aaOzoggJgBOgESBsouahBQU0GCgoAJXQCpA2UXNSgoCYDBQWAEjoB0gZKLmpQUJOBggJACZ0AaQMlFzUoqMlAQQGghE6AtIGSixoTF7S3eq/cFGwE/hMYBc/aE7dUfivjYOKC7lx69lTJTSFC6K3ey+2KClORkJbKbwXooRMgbaDkosasBe2t3suyrORj8uTWPcMwy36f5IxILMsa/xlQkitlmoLuXGwV5RmGkZv7msCEw/wCZdOplZngq/p/iGfhZcJhzJS51ajy3JYFSi5qzFrQycZbTDjMf5KH5LpzorXvrnxx4OOpO7+uJ5PiT08WSgb5MnbmNBMOZxhGoaOFL9quyor+jz6YuNyQiscEj1G3QsnbAo3+6AMlFzVmLSgTDo9883U2nVKYgZyVEi15VNRw7dFNWxoTsxZ05xIfGR6/eIEJhxUeVSIpWse+6vVkUvCAMih5G6DRH32g5KLGlAV1Hjm8Fo10lpeFu2wKHYasjGjDXTbBM3bkWhoQUxZ05+LYV51Np+y7KwO/3Ref8nLIiTbw2/1of5+alkBHaPRHHyi5qDFlQecsbdMPH1jLSka++Vqhw5CVEe3UvTuCT0+5lgbElAXduUzd+XWh224tK+n/6AOWZeWGbsmJdvziBcHFFyh5G6Cwnw6Bkosa8xW0q7IiwzDkyXed5WXpREKuw5CVEe30wwcRR6+algbEfAXd0TDh8OjxOvL1st8nN95QTrTeSz8t+31qWgIdodEffaDkosZ8BfWcP8v/FAs2P5LrMGRlRLs4OBD47b6algbEfAXduTiPHE4nEtyo6YnLDXLjDeVEO/vkcbjLpqYl0BEa/dEHSi5qzFfQ126X79oV7tuBgwdYmQ5DVkq0ziOHs+lU3/6aTVsaE/MVdOcyb+3gD0ro2VO1kclIjjeUFG3f/ppsOiXY8aDkbYDCfjoESi5qTFbQ5zX7NjIZgYBXZoKSHYbsX0XbWV72qv4f6URi4nKDcksjY7KC7ly6Kiuy6dTgoYP8FxcHByTHG4pF6z51kgmHg82PNm0JdIdGf/SBkosakxVUPDLLWlYy2XhLssOQZdllvy8+MhwfGV6ZCWbTqdVQ6OXRI5ItoWSgCfHILGtZydiZ05LjDZlweGUmSHbFZGAqwzCpeExy1hooeRug0R99oOSixkwF7SwvW4tGph8+cB45zGfszGmWZcUdhizLBn677zl/1nP+7MujRxQmMmShZKCRxLhn3toh2BWHa49uZDLi8YZMOBxqfUp2xeHao89r9sm9LZS8DVDYT4dAyUWNmQpKPu+YcFiM5IyGrGrRqm9ZcMxU0J1L3/4almUld8X1ZJJmTi4oeRugsJ8OgZKLGjMVNNxlI/eAipHsMGShZLA1BH67v+T1Sv5o6IvPWNF4QyjZUFDYT4dAyUWNaQpq312ZTadGvvla8qdk6n9BhyELJYMtgFxA8V76Sa7BaigkGG8IJRsKGv3RB0ouakxTUDJYWvzkHI45S1vec3Kpb1lwTFPQnQu5gNJdtVuuwdSdX/OekwtK3gZo9EcfKLmoMU1Bl7xe8R0jfJxHDrN/7TBkoWSwBSx02wWzvwlw7Ktm/zreEEo2FPnLT49AyUWNOQpKJhAmk2gqsBaN8DsMWSgZ6E131e5sOsVNoinHa7eLP94QSjYUFPbTIVByUWOOgvbtr1F48h3H0Bef8Z+66Dl/tmdPlZr3V9+y4JijoDuX3uq9nvNnFR6NTHhx4GPXye+4b10nv1O48YmP+pYgb+gESBsouahBQU0GCgoAJXQCpA2UXNSgoCYDBQWAEjoB0gZKLmpQUJOBggJACZ0AaQMlFzUoqMlAQQGghE6AtIGSixoU1GSgoABQQidA2kDJRQ0KajJQUAAooRMgbaDkogYFNRkoKACU0AmQNlByUYOCmgwUFABK6ARIGyi5qEFBTQYKCgAldAKkDZRc1KCgJgMFBYASOgHSBkoualBQk4GCAkAJnQBpAyUXNSioyUBBAaCEToC0gZKLGhTUZKCgAFBCJ0DaQMlFDQpqMlBQACihEyBtoOSiBgU1GSgoAJTQCZA2UHJRg4KaDBQUAEroBEgbKLmoQUFNBgoKACV0AqQNlFzUoKAmAwUFgBI6AdIGSi5qUFCTgYICQAmdAGmjv5IRBEEQBMkjUDKCIAiCGCJQMoIgCIIYIlAygiAIghgiUDKCIAiCGCJQMoIgCIIYIrgJCgAAAMihrxC1BkoGAAAAcugrRK2BkgEAAIAc+gpRa6BkAAAAIIe+QtQaKBkAAADIoa8QtQZKBgAAAHLoK0StgZIBAACAHPoKUWugZAAAACCHvkLUGigZAAAAyKGvELUGSgYAAABy6CtErYGSAQAAgBz6ClFroGQAAAAgh75C1BooGQAAAMihrxC1BkoGAAAAcugrRK2BkgEAAIAc+gpRa6BkAAAAIIe+QtQaKBmYBMe+6hcHPpb80cDBA9yP7LsrbRXlBV9a9SvlPHKYo/+jDwq78Dtr6wGQB/oKUWugZGASpu78Gh8ZFr/uOX82wzBDX3xGvk3FY4uDAwVfWvUrlU2nmHCYQP7Flv2+l0ePFGR5dtbWAyAP9BWi1kDJwCRIKnnkm6+z6dTo8TrulYnLDfxvtx/77sp5a0d+K9VZXta3vybY/Ggjk/GcP7v9y1nwrQfAVqOvELUGSgYmQazkoS8+yzDM+MULBV82Po591er/TeRO/b2XfsowTM+eKoMsJwCmQV8hag2UDEyCwF59+2vSiYT/xvWCL5gAXZRsLSvJplMj33xtkOUEwDToK0StgZKBSeDbq2dP1Vo0Emx+JG7Wt7/Gsa9a8tsXBz6euNzgOX+2b3+Nwh/q21/jOX/We+mnFwc+7iwvk2tm31358ugR37Uro8fryOlsz54q55HD7lMnWZblRmzZd1eqXCkBTDjM77uWe6uePVX8UW9q1ldhOQVbj/+KraKcW19+g67KitHjdd5LP3GX8/PepABsA/oKUWugZGASOHt1VVaszAQXuu2SH+5zlrapO78Kvu3bX8OEw4lxz5yl7bXblU2nXtX/Q/y7PXuqYk4nEw4vdNsXuu1r0Uh8ZFjce9xZXjZ17046kXjtds1Z2ha67al4zH/juuvkd0w4vBaNsCzLjdgaPHRQzUoJsFWUb2Qyw7VHuVdYlnUeOSxu6Tl/lv8OatZXYTkFW497ZeiLz1ZDoYijl2yWmNNJNr7/xvW1aIRsrlQ8FnH0dlVW5LFJAdg29BWi1kDJwCQQe3VVVrx2u+Ijw3InW2Ilzz55/Nrt4p/DDdce3chkBLdU9VbvTcVjvmtXuHfuqqyYt3Yseb38Zp3lZa/drpjTyfeKraKcO7nUpeN6/OKFtWiEf1rMqlayyvWVXE5JJS8ODvDX1767MjHumbjcMPLN14uDA9xC2ndXvna7+JcSVG5SALYTfYWoNVAyMAnEXgvd9mW/T3AqxkesZJZlxfcUhbts4S6b4Bdn/mgRNLNVlKfiMf6v+29cT4x7FHpf6ZXsPnUynUjwT5GtWpSscn3VK3kjk3les4//4osDH2cYhgmHBX3po8frVmaCWjcpANuJvkLUGigZmISpO7+uRSMbmYxknzOHWMmS52TuUyf5r/ftr2FZtrtqt7jlzB8todan5Gv77sr1ZHLg4AGFBdCq5FQ8NmdpI4S7bMt+32u3S9zdzapWspr1lVtOSSXHnE7xG64nk4Hf7iusu8pNCsA2o68QtQZKBiaBnFAKJgYRI9lxLW7mPHKYCYe5b10nv0sGpiTf0HvpJ85Jw7VHV0Mh5eXUqmQmHJ668+vUnV/nrR0Zhon290megrNaOq43XV+55ZRUsvhM11pWwoTD4tvPOsvLWJbtrd6rfpMCsM3oK0StgZKBSeD6eP03rmcYRm7UtOTwLnEzgaImG2/xZ9Hik04kOA1PXG7YdHIrmo7rrsqKxLhHciQ5q2V416brK7eccsO7xG/IhMOSy8OyLLmsrnKTArDN6CtErYGSgUng22vmj5ZUPCa4XYeQn5Kn7vy6ODjg2FctCTnts5aVTN27s9BtV15OymvJfftrsulU/0cfCFqyO03JKjcpANuMvkLUGigZmAS+vTrLyxa67SszQfHtNPkpeezM6WW/b9NlGL94YdNm9MO75ixtEUev4MW1aERyqkvftSvGVLLKTQrANqOvELUGSgYmQWAvW0X5a7crMe4RjL7OT8lDX3y2nkwqT+th/dcUnsrN6JXct79GPMg5Me6RnPV69sljYypZ5SYFYJvRV4haAyUDkyC2F5kzhJu2gpCfkq1lJct+n2RLPp3lZUte7/TDBwptevZUsSyrUkVy9yVH+/vmLG38V8JdNnGfec+eqvVkMj8lSy6njkpWuUkB2Gb0FaLWQMnAJEjaq2dPVSoe47sqbyW/PHokwzDuUyf5L9p3VwZ+u8+/8Dl46GA2nRKcsNoqyvltsumUyvtu5ZTsPHI4m07xu+VfHPh4I5Ph3xzVVVkR7rLlfZYsuZz6KlnlJgVgO9FXiFoDJQOTIGevvv0168kkN0o5byVby0pGj9etJ5PR/r7Jxlu+a1fmrR1r0cicpU3QN+48cphMDDl174730k/B5kepeIx/oTfw2/10IjHzR8u8tUP5JmaFOa6X/T7B0GvftSvZdCrU+tR76afphw+W/T7Xye/yHt4luZz6Kln9JgVg29BXiFoDJQOT4NhXLZgSkuN5zT7nkcPkU17hsRN87LsrJWef7q3eO3bmdLD5UeC3+6/q/yG4oMvRXbV79Hjd1L07weZH3ks/if+E6+R3U3d+dZ86qewehZVy7KsWL2H/Rx9MXG6Y+aNl7Mxp7lkXco+dULO+guVUeOyEgMFDByU7551HDtsqyvPYpABsD/oKUWugZAAAACCHvkLUGigZAAAAyKGvELUGSgYAAABy6CtErYGSAQAAgBz6ClFroGQAAAAgh75C1BooGQAAAMihrxC1BkoGAAAAcugrRK2BkgEAAIAc+gpRa6BkAAAAIIe+QtQaKBkAAADIoa8QtQZKBgAAAHLoK0StgZIBAACAHPoKUWugZAAAACCHvkLUGigZAAAAyKGvELUGSgYAAABy6CtErYGSAQAAgBz6ClFroGQAAAAgh75C1BooGQAAAMihrxC1Rn8lIwiCIAiSR6BkBEEQBDFEoGQEQRAEMUSgZARBEAQxRKBkBEEQBDFEoGQEQRAEMURwExQAAACQQ18hag2UDAAAAOTQV4haAyUDAAAAOfQVotZAyQAAAEAOfYWoNVAyAAAAkENfIWoNlAwAAADk0FeIWgMlAwAAADn0FaLWQMkAAABADn2FqDVQMgAAAJBDXyFqDZQMAAAA5NBXiFoDJQMAAAA59BWi1kDJAAAAQA59hag1UDIAAACQQ18hag2UDAAAAOTQV4haAyUDAAAAOfQVotZAyQAAAEAOfYWoNVAyMDmDhw727KkSv27fXek8cri7ajf5lvtiRzB46KDzyGHCiwMfd1VW5P1WO2vFAdhq9BWi1kDJwOQw4bDn/FnBi12VFa/drpjT2VleZi0rGb94gWXZl0ePFHxp1a9UOpFgwmEmHM6mUyzLpuKx127X1L079t2V6t9nx604AFuNvkLUGigZmByxkjvLy6L9fUteL3dy2Vu9d/rhg8KeL7pPnRw7czq/lerZUzV46ODYmdNLXm8qHlP/PkZYcQAMhb5C1BooGZgcsZLnrR0rM0HJ3uwCMmdpm7rza94rxeE5fzadSPiuXSn4GgGwE9FXiFoDJQOTI7BXsPlRKh57XrOv4AsmQC8lW8tKXCe/y6ZTjn3VBV8pAHYc+gpRa6BkYHL49vJdu5JhmBcHPha0sVWUO48clvzWvrty9Hid79qVkW++VhhF1VVZ8fLokYnLDaPH65TPv/s/+mDszOmJyw1DX3xG3pCM1VocHJiztHEjttSvlCTR/r7FlFBsIgAAFAtJREFUwQHJNRr64jPP+bNDX3wmeF1uHBzZCIOHDqpfZbk/x+HYV+05f9Z37crgoYPkcj4ABkFfIWoNlAxMDmcvz/mzG5mMwA0Ex75q/q7LfTt1785qKBRqfTrzR8vKTDAZmJI8vfacP5uKx6L9fdMPH0QcvRmG8V76Sdys/6MPlv2+1VBo3toRbH4UHxkmfyXcZYuPDKfiMSYcjo8Mx0eGg82PVK6UHC+PHtnIZDjbcWtEOu3nrR3z1g7Bis8+eUxeFDN1785Ct139Ksv9OcL0wwcbmcxrtyvY/GhxcGA9meyt3lvw/QQAgr5C1BooGZgcYq/R43XZdMp18jvJNpJKnrjcMGdps1WUkxc7y8vmLG3xkWHB7/quXVnyevm9xIOHDqYTCYEyR775ej2ZfFX/D/6LfMHr2HFtLSvp2VPFsmzf/hr+Go0erxPInr/ig4cOZtMpcU9AZ3nZWjQyXHtU/SrL/TlrWcno8bqNTKb/ow/4G4HmJi4A9EVfIWoNlAxMDhMOzz55nGGYicsNcm0klbzk9Qr6VHv2VGXTKX6vcs+eqnQiIb5q+6r+H6uhEPfrXZUVa9GI+9RJheXUV8nWspIMw4wer+OvEb8rW3LFk4Gp8YsXBG1GvvmaCYc1rbLcn7OWlcz80SJ3Lg6AEdBXiFoDJQOTQ27hXQ2FFE7FJJU88s3X4pav3S6+C2f+aJl98ljcrLO8jH8uOHXn19dul/Jy6q5kfhuyRuLudMGKT1xuEC/nQrfdf+O6plWW+3PWspLJxluSqgbAIOgrRK2BkoHJYcJh76WfXrtdr90uuZFEkkqWHOu00G2fbLzFfZsY98id+yYDU5zUo/19kn7io7uSs+kUNyaLrJF41JhgxburdmfTKX53OukY4G8KNass9+esZSXPa/Zl0yl+NzgAhkJfIWoNlAxMDrFXz56qlZngQrdd0spyw7vECMSZTiQU/hc4azLh8KYS0lfJz2v2sSzLzeQld5AhXtNwl23q3h3uW9+1K9H+Pn4DNauscExjLSsZO3N6PZmMOHo3HVgOwPajnwzzCZQMTA5nr+c1+1Lx2MwfLeI2eSt5PZl0nzrp2FctCddVnk2nJEd6K7yzypWSY/R43Vo0sukaiV8frj26Fo1wBy4rM0FBB76aVVbYgAT77srAb/ez6dRCt91oc7aAIkdfIWoNlAxMDt9eAwcPZBhGbL68lbzk9W7agWwtK0kGpjad5FJHJXeWly37ffwJvNQr2co7px88dJCvZ/WrvKmSCc9r9i0ODqxFI5rm5QZgS9FXiFoDJQOTI7DXcO3RjUxGcGU3byWHu2ySY50ERBy9mzbTUclTd35d9vv4KtWk5MnGW+Eum9wiqVlllUq2lpXYd1euJ5PqJ+UGYKvRV4haAyUDkyO2F5kzhH+Pct5Kdh45LBj9JMnLo0cEw6bEBH67r/7uIDkl2yrKJxtvZRhGMNmWJiX3Vu/NMEzPnqoMw4gn8VCzyuqVbC0rWZkJQsnAOOgrRK2BkoHJkbTXZOMt/kxeeSvZWlYScfS+drsED1NyHjksmCUj3GVb9vsEVuaPbxq/eCEZmMpvpTrLy/r217hPnVwNhRLjHm6GkE3XSO71aH9fuMsmd7fSpqussAFHj9dxs69Yy0oGDx3cyGTECwxAodBXiFoDJQOTI3dCSeYPIVKkUXJXZUW4y7YWjZAfzT55TGbNFMwU1lleFmx+lGGYiKN36t6d6YcPFgcH0okE18C+uzIVjy37fdMPH4Ran266UtzzkplwmGXZDMMseb2+a1fUDCnf9HXXye9YlpWb7GzTVVbYgBFHbyoeC7U+nbp3h2wBwYxmABQWfYWoNVAyMDlyT1PoLC9zHjlMprZQeOyEgL79NZJPWHp59Ijv2pXZJ48nLje8PHpE7gbo/o8+eFX/j5k/Wqbu3RGcL1rLSnqr9/quXfFdu7Lp3UHkSRUcm/acy62R3Otk4yg/EEJhlRU2YGd52XDt0al7d2b+aJm43GDAR3KBIkdfIWoNlAwAAADk0FeIWgMlAwAAADn0FaLWQMkAAABADn2FqDVQMgAAAJBDXyFqDZQMAAAA5NBXiFoDJQMAAAA59BWi1kDJAAAAQA59hag1UDIAAACQQ18hag2UDAAAAOTQV4haAyUDAAAAOfQVotZAyQAAAEAOfYWoNVAyAAAAkENfIWoNlAwAAADk0FeIWgMlAwAAADn0FaLWQMkAAABADn2FqDVQMgAAAJBDXyFqDZQMAAAA5NBXiFoDJQMAAAA59BWi1kDJAAAAQA59hag1UDIAAACQQ18hag2UDAAAAOTQV4hao7+SEQRBEATJI1AygiAIghgiUDKCIAiCGCJQMoIgCIIYIlAygiAIghgiUDKCIAiCGCL6K7nh2ZsAAADATkRfIWoNlAwAAADk0FeIWgMlAwAAADn0FaLWQMkAAABADn2FqDVQMgAAAJBDXyFqDZQMAAAA5NBXiFoDJQMAAAA59BWi1kDJAAAAQA59hag1UDIAAACQQ18hag2UDAAAAOTQV4haAyUDAAAAOfQVotZAyQAAAEAOfYWoNVAyAAAAkENfIWoNlAwAAADk0FeIWgMlAwAAADn0FaLWQMmg8Fxr33urs6bgi1G0yw8A4NBXiFoDJYOt4nLb23fsH3Fc76iWa9npqg/FXNuzVFcsVbq/p5rlJ1tD8kfXO6r5P9qKJdxSbnXW/Dn4Xaer/unQyV9t+wu+PADQoK8QtQZKBlvFHftHgn0jtb4yszjS8uKYoOW2Kdkz086kl3R3nprlJ1tD/Pr9nk9XU/EBX9OWLuEWca19r3PyUSabjidnQzFXJOFLZ5hg1FnwBQMgb/QVotZAyWCrEEjopnXfw+dfuoPPshsZx6tGfsttU3Kr87Rz8pHub5u3km911iRW5l3TT7d6CTXR5739wPG5mpYT8z2hmOtu9yfcK1csVU29hwq7/ADQoK8QtQZKBluF3Hlhp6s+k03zu2q3s+N6K8hPydfa98aWp/1hx+W2twu+CnyWVhfEPRliHg/UMemlm9Z9BV9gAHREXyFqDZQMtgo5JTc8ezOenLWPXea+LUIlX257ey7umYt7DNhHrVLJg/4HUwv9BV9aAPRFXyFqDZQMtgoFJU8t9PN7a/lKu95R3eo83T58nt93SsZGyZ1NXu+oFgx4buo91D58vtV5WjCmTGFo9N3uT9penm17eZbfDcv99abeQ20vz3aMXpTs0dWq5Mttb/vDjtjy9LX2vYJmgiXkf8ttGeWe4Wvtex8P1JFFVT7/FqwyNxwvubbYPnx+00F5LybuJVbm1e8PygumaU3l6st/t4fPv+x01bc6T0uOqrvWvpec319ue7vlxbFW52mc7gOCvkLUGigZbBUKSg5GnS8m7nHfEqVdbnt7Yr4ntjztDXVNLfQz6aWJ+R4irSuWKia91DF6UfLdQjEXNzzqiqXKH3ZkNzIziyP+sGNpdWF8tlPwhwS//nTo5GoqHk/OTsz3kF/hD1DqdNUnVuaTa4tTC/0T8z3kC4FKtSrZNf10aXVB8uBA8Fb8LZNYmZ+Y7wlEBtMZxjX9VGy1y21vD/iaUusrgcigN9QVW56OJ2fv93wq/iuSq/yrbf/S6sLS6kJ2I7OaipOve8dvyK3R/Z5PWZZVc9VZzYKpXFPl+pK/5XjVmFpfiSR847Odgcggk16ai3sEQ8E7XfXjs53X2veGX3ujS1MziyP8HRIUM/oKUWugZLBVyCn5ctvbq6n406GT3Cudrvq5uGdivocvgFudNZGEj3PtSOCx5FDeO/aPshsZ7gPXHXwWXZrizngut739z/5/4/8hgTudk49WU/HHA3X8xeNrJrm22Oo8zX17vaM6kvAJRmBpUvKLiXurqbikKcVvxW2ZPu9t/lslVubFsgxGnRPzPfwTxxcT91LrK4JTyU1XWWXHdcOzN0MxVzw5K+5XyGPBVK6pcn0bnr0ZiAxGl6b4m/dy29vOyUep9RX+chIlOycftb08q2ZNQfGgrxC1BkoGW4Wckh2vGuPJWf411E5XPcuy/K5swuOButT6Cvm6qfcQX70czslH/rCD+za5ttjpqpdbJIHwHvX9PZ1hlG+lFfctPx06mcmmFd5WYWvYxy6nM8yjvr+rXEKyZYan/ilo1vby7Goqzn+lffh8PDkrPnXmdyGoXGX1Sr7WvndmcSSdYbo9V+XaqFwwlWuqXF/SWPLy/PhspzfUxf9z0aWpgg9uBwZEXyFqDZQMtgqxkq9Yqgb9D8ROIh/HktcFWZblrgVGEj7B3VPkhPvPwe+4V6JLU+qVPBf35NFdeb2jmmVZfrezeiULbnnadAnltszltrdZluWbdWl1oX34vPgN24fP86/4qlll9UrmFpJ0Dkue+qtcMJVrqlzf2PK0zX1J8ke3Omsy2TT3PuTPyfVVgGJGXyFqDZQMtgoioVDMRUiszGc3MpIf3J2uesE5H8dqKs71TNrHLseWp/k/fTp0cml1gf9K7/iN6NKU3BguvvCuWKrYv1pNDfd7Pn06dJLlHSg0aFHyP/v/LZ1h+KPNFZaQfCtYQY7U+gp3ZHPTuo/961ECB+ld0LTKWpVMFsAb6spk0wLfq1ww9WuqUN9r7Xvl/hYhnpzljt4U/hwocvQVotZAyWCrIBLqdNUT/tn/b2pMKYCvh+sd1Zlsmn/VMxAZFJ83u4PPUusrA74m8SkX/w89cHwu6H+W5HLb2x2jF8dnO+PJWTJNVSAyyOar5IZ/9XvLXcKUHN616ZZ51Pd3lmXJgCwBybVF9l8aVrnKeSiZ0PbybDrD8HuDVS6Y+jVVqO/D518qr10gMsh1sHe66sOvvXmsIzA9+gpRa6BksFUojLgWoPLjuOHZmxPzPSOBx+TrW5016Qwjee/Ko76/h2Ku1PqKwjRhjwfq5E7N+asQW54OxVydrnr+DTkshZIbnr1pc1/KZNOCcUmSb6Vyy5CL7vwZxQWQS7lqVlm8zTXx5+B32Y0MN5BK5YJp2gfk6kumLlFYNn/YwbXvdNXjpmogib5C1BooGWwVW6Fk8rFLPsf7vLcn5nsU3vbxQF1ybXHQ/0DyD5F7eMSjt/jMLI6IRwCRDlIaJTc8e/PFxL10hhHfd5ufksmbK6+LylUWb3Ot8OeBUblgmvYBufre6qxhZUYkEKJLU9zgeTLiOu91BCZGXyFqDZQMtoqtUDJ5hdxApcYcbS/PJtcWJU/FyLghhXcgV17FV75JZyylkhuevekOPltNxQV3EOWn5IZnb2Y3MgoDuVWustw210Qk4ePftqRmwbTuA3L1ZdJLci2vd1SnMwxXTSgZyKGvELUGSgZbxRYpecDX5A87Wl4cEwz1UlgGuQuWnpl2BZWSkdXi7uWJ+R5WDyWTObziyVmFwdvqt4xnpl1NT6zyKhPiyVnJMdJquNa+N51h+Dc9q1yw/JQsqO+LiXtybzLga5pZHOH/OSgZSKKvELUGSgZbxRYp+Vfb/kw2zR+qw3G9o1rQmEyLIfeHblr3pdZXBv0PBHfNcmeu8eSs4IO723P1xcQ9Vg8lNzx781r73rm4J5LwcV27eSuZ3OTDn2eDewe+IDdd5YZnbwajTu6CvXLVBOP1yNRac3EP/81VLpiaNd20vlcsVUurC8NT/xTcmtz28mxqfYV/mQBKBnLoK0StgZLBVrFFSm549mYw6sxk0+KrhsTWZLbOAV9TKObi30Ml+Yfu93waXZqai3uck49s7kvOyUfRpSl38Bn56aO+v6fWVybme+xjl8kZGLl6zeqk5IZnb9607iMPGyYay1vJDc/efPj8y6XVhVDM5Zx81O256pp+St5Z0PeuvMoNz95sdZ7ObmTGZzsH/Q/kbvNtePYmuespEBkcnvrngK/JNf10NRWfWRwRj6tXs2Bq1nTT+jY8e/NWZ83M4sjS6oJr+ql97DJ5NsbS6sLD518KdjkoGUiirxC1BkoGW8W19r0Kszrwudv9CX+6Dz5tL8+KP+Jd00/lPk9vddb0eW97ZtrdwWe94zcE2pb8Q1csVW0vzzonH5EZFp8OnRSc5L2YuDc+29nnvc2dZnW66vlDlhSWX83WuNVZ0+mqJ+epgrfSumWud1R3jF4cCTz2zLQ7XjVKDuredJUbnr35dOjkSOBxn/e28mSZd7s/6R2/Qcox6H+gsBE2XTCVa6pcX8LltrefDp0kVRue+mf78Hlxs7vdn8htHFDk6CtErYGSwQ6DPIJCcNIDAAC6oK8QtQZKBjuM9uHzkYSv4IsBADAl+gpRa6BksJO4YqmKJ2dV9ocDAIBW9BWi1kDJYMdw07rPM9MeXZoSP1YIAAB0QV8hag2UDHYGmWw6k01Hl6Y2fTovAADkjb5C1BooGewMmnoPNfUewvkxAGBL0VeIWgMlAwAAADn0FaLWQMkAAABADn2FqDVQMgAAAJBDXyFqDZQMAAAA5NBXiFoDJQMAAAA59BWi1kDJAAAAQA59hag1UDIAAACQQ18hag2UDAAAAOTQV4haAyUDAAAAOfQVotZAyQAAAEAOfYWoNVAyAAAAkENfIWoNlAwAAADk0FeIWgMlAwAAADn0FaLWQMkAAABADn2FqDVQMgAAAJBDXyFqjf5KRhAEQRAkj0DJCIIgCGKIQMkIgiAIYohAyQiCIAhiiEDJCIIgCGKIQMkIgiAIYohAyQiCIAhiiEDJCIIgCGKIQMkIgiAIYohAyQiCIAhiiEDJCIIgCGKIQMkIgiAIYohAyQiCIAhiiEDJCIIgCGKIQMkIgiAIYohAyQiCIAhiiEDJCIIgCGKIQMkIgiAIYohAyQiCIAhiiEDJCIIgCGKIQMkIgiAIYohAyQiCIAhiiPwNQRAEQRCD5P8HBvRVUiZ91yYAAAAASUVORK5CYII=" alt="" />

Kinect 数据模式

1.Sensor

KinectSensor类

private KinectSensor kinectSensor = null;

this.kinectSensor = KinectSensor.GetDefault();

this.kinectSensor.Open();

this.kinectSensor.Close();

2.Source

源,Kinect上的各个传感器

它公开了每一个传感器源的元数据然后给你一个入口

体感器每一数据类型展示一个源

属性(字段):

AudioSource  获取音频的源

BodyFrameSource   获取身体框架的源

BodyIndexFrameSource   获取身体索引帧的源

ColorFrameSource   获取颜色帧的源

DepthFrameSource   获取景深帧的源

InfraredFrameSource   获取红外帧的源

LongExposureInfraredFrameSource   获取长曝光红外帧的源

3.Reader

一旦有了Reader,你就可以使用事件来访问各帧

在一个源上,可以使用多个Reader

Reader可以暂停

//为红外帧源创建一个读出器,赋值给InfraredFrameReader类的实例:reader

InfraredFrameReader reader = sensor.InfraredFrameSource.OpenReader();

//为FrameArrived事件注册方法,事件的触发条件是一旦捕获到帧(就绪)就触发

reader.FrameArrived += InfraredReaderFrameArrived;

打开读出器,订阅已经就绪的帧事件,当有帧进来时就回调

4.Frame References

帧引用

帧引用,在帧事件的数据变量中,事实发送的就是帧引用

这样你才能访问帧本身

方法:

AcquireFrame 获取此引用所持有的帧

如果在事件触发之前,或者在你对其进行处理之前帧就已经过期,你就只能从已获得的帧方法中得到一个空帧。这就是为什么需要查看一下的原因

属性:

RelativeTime (相对时间)可以使你对不同的帧建立暂时的相关

不是绝对时间,是让你能比较各个源之间的时间

使用方法:1.注册帧事件,获得帧引用

2.使用using数据块即可,这个using数据块将自动处理帧,完成后腰准备好处理下一帧

某一时刻只有一种类型的一个帧可用,如果不关闭、不处理帧,你就不能得到新的帧

void irReader_FrameArrived(InfraredFrameReader sender,              

                           InfraredFrameArrivedEventArgs args)

{

    using (InfraredFrame frame = args.FrameReference.AcquireFrame())

    {

       if (frame != null)

       {

           // Get what you need from the frame

       }

    }

}

5.Frame

帧本身

有了帧,就可以访问实际数据并加以利用了

建议拷贝一个本地副本或直接访问基础缓冲区,这样你就可以迅速做出反应而无需长时间地使帧保持在当前可用状态

每个帧都有宽度和高度数值等格式

6.FrameDescription类

  继承于接口IFrameDescription

帧描述,获得帧的相关数据(宽、高等)

帧描述的长度以像素为单位

使用红外源在Windows应用商店应用内输出图像

  

public sealed partial class MainPage : Page
{
public MainPage()
{
this.InitializeComponent();
this.Loaded += MainPage_Loaded;
}
KinectSensor sensor;
InfraredFrameReader irReader;
ushort[] irData;//储存读出器读出的数据,IR数据的格式是Ushort
byte[] irDataConverted;//将红外数据转换为图像,创建缓冲区
WriteableBitmap irBitmap;//提供可写入并可更新的位图流,将我们转换好的图像送入XAML中的image //其实和在构造函数里写是一样的,MainPage构建时触发事件执行下面的方法
private void MainPage_Loaded(object sender, RoutedEventArgs e)
{
//初始化
#region
sensor = KinectSensor.GetDefault();//获取默认Kinect
irReader = sensor.InfraredFrameSource.OpenReader();//打开红外读出器
FrameDescription fd = sensor.InfraredFrameSource.FrameDescription;//创建红外帧描述
irData = new ushort[fd.LengthInPixels];//帧描述的长度以像素为单位,16位整数数组 65535
irDataConverted = new byte[fd.LengthInPixels * ];//IR需要转换为RGBA图像需要进行四次 #FF FF FF FF
irBitmap = new WriteableBitmap(fd.Width, fd.Height);//创建位图
image.Source = irBitmap;
#endregion sensor.Open();//1.打开传感器
irReader.FrameArrived += IrReader_FrameArrived;//2.为读出器订阅事件
} private void IrReader_FrameArrived(InfraredFrameReader sender, InfraredFrameArrivedEventArgs args)
{
//能否能从事件数组变量中的帧引用获取帧
using(InfraredFrame irFrame = args.FrameReference.AcquireFrame())
{
if (irFrame!=null)
{
irFrame.CopyFrameDataToArray(irData);//将帧数据复制到数组中
for (int i = ; i < irData.Length; i++)//循环得到RGBA
{
byte intensity = (byte)(irData[i] >> );
irDataConverted[i * ] = intensity;
irDataConverted[i * +] = intensity;
irDataConverted[i * +] = intensity;
irDataConverted[i * +] = ;//A为透明度,指定为255为不透明
}
irDataConverted.CopyTo(irBitmap.PixelBuffer);//将RGBA复制到位图的缓冲区中
irBitmap.Invalidate();//请求绘制或重绘位图
}
}
}
}
上一篇:Practical Vim 第一章 & 第二章


下一篇:Windows Server基础架构云参考架构:硬件之上的设计