Activity的生命周期和启动模式

Activity的生命周期分析

  1. 典型情况下的生命周期。是指在用户参与的情况下,Activity所经过的生命周期的改变。
  2. 异常情况下的生命周期。是指Activity被系统回收或者由于当前设备的Configuration发生改变从而导致Activity被销毁重建,异常情况下的生命周期的关注点和典型情况略有不同。
典型情况下的生命周期

onCreate:表示Activity正在被创建。

onRestart:表示Activity正在重新启动。

onStart:表示Activity正在被启动,即将开始,这时Activity已经可见,但是还没出现在前台。

onResume:表示Activity已经可见,并且出现在前台并开始活动。

onPause:表示Activity正在停止,正常情况下,紧接着onStop就会被调用。

onStop:表示Activity即将停止,可以做一些稍微重量级的回收工作,同样不能太耗时。

onDestroy:表示Activity即将被销毁,这是Activity生命周期中的最后一个回调,可以做一些回收工作和最终的资源释放。

Activity的生命周期和启动模式

注意点:

1,当用户打开新的Activity或者切换到桌面的时候,回调如下:onPause -> onStop,这里有一种特殊情况,如果新的Activity采用了透明的主题,那么当前Activity不会回调onStop。

2,onStart和onResume、onPause和onStop,有什么实质不同呢。

从Activity是否可见的角度看,onStart和onStop配对,从Activity是否位于前台这个角度,onResume和onPause配对。

3,假设当前Activity为A,如果这时用户打卡一个新的Activity B,那么B的onResume和A的onPause哪个先执行。

先会执行A的onPause后,新的Activity才能启动。官方文档中有这么一句,不能在onPause中做重量级的操作,因为必须onPause执行完成以后,新的Activity才能Resume。

异常情况下的生命周期分析

1,资源相关的系统配置发生改变导致Activity被杀死并重新创建。

比如当前Activity处于竖屏状态,突然横屏了,那么此时系统配置发生了改变,在默认情况下,Activity就会被销毁并且重新创建,拿的资源图片就会不一样,当系统配置发生变化之后,Activity会被销毁,其中onPause、onStop、onDestroy均会被调用,由于Activity是在异常情况下终止的,系统就会调用onSaveInstanceState来保存当前的Activity状态,这个方法是在onStop之前,它和onPause没有既定的时序关系,可能在onPause之前,也可能在onPause之后调用,需要强调下, 这个方法只会在Activity背异常终止的情况下调用,正常情况下系统不会回调这个方法。当Activity重新创建后,系统会调用onRestoreInstanceSate,并且把之前保存的数据恢复回来。

Activity的生命周期和启动模式

关于保存和恢复View层次结构,系统的工作流程是这样的:首先Activity被意外终止时,Activity会调用onSaveInstanceState去保存数据,然后Activity会委托Window去保存数据,接着Window再委托它上面的*容器去保存数据,*容器是一个ViewGroup,一般来说它很可能是DecorView。最后顶层容器再去一一通知它的子元素来保存。这是一种典型的委托思想,上层委托下层,父容器委托子元素去处理一件事,这种思想在Android中很常见,比如View的绘制过程,事件分发等等。

总之,系统只有在Activity异常终止的情况下才会调用onSaveInstanceState和onRestoreInstanceSate来存储和恢复数据,其他情况下不会触发这个过程。

2,资源内存不足导致优先级低的Activity被杀死

Activity按照优先级从高到低,可以分为三种。

  1. 前台Activity—正在和用户交互的Activity,优先级最高
  2. 可见但非前台Activity—比如Activity中弹出了一个对话框,导致Activity可见但是位于后台无法和用户直接交互
  3. 后台Activity—已经被暂停的Activity,比如执行了onStop,优先级最低

当系统内存不足时,系统就会按照上述优先级去杀死目标Activity所在的进程,并后续通过onSaveInstanceState和onRestoreInstanceSate来存储和恢复数据,如果一个进程中没有四大组件在执行,那么这个进程将很快被系统杀死,因此,比较好的方法是将后台工作放入Service中从而保证进程有一定的优先级,这样就不会轻易地被系统杀死。

Activity的启动模式

Activity的LaunchMode

  • standard:标准模式,系统默认模式。每次启动一个Activity都会重新创建一个新的实例,不管这个实例是否已经存在。在这个模式下,谁启动了Activity,那么这个Activity就运行在启动它的那个Activity所在栈中。
  • singleTop:栈顶复用模式。在这种模式下,如果新的Activity已经位于任务栈顶,那么此Activity不会被重新创建,同时它的onNewIntent方法会被回调,通过此方法的参数我们可以取出当前的请求信息
  • singleTask:栈内复用模式。这是一种单例模式,在这种模式下,只要Activity在一个栈中存在,那么多次启动此Activity都不会创建实例,和singleTop是一样,系统也会调用onNewIntent。还有一点,就是singleTask有clearTop的效果,会导致栈内已有的Activity全部出栈。
  • singleInstance:单实例模式。这是一种加强的singleTask模式,它除了具有singleTask的所有特性以外,还加强了一点,那就是具有此模式的Activity只能单独位于一个任务栈中,比如Activity A是singleInstance模式,当A启动后,系统会为它创建一个新的任务栈,然后A独自在这个新的任务栈中,由于栈内复用的特性,后续均不会创建新的Activity,除非这个独特的任务栈被系统销毁。

如何给Activity指定启动模式,有两种方法,第一种是通过AndroidMenifest.xml

     <activity
android:name="com.ryg.chapter_1.SecondActivity"
android:configChanges="screenLayout"
android:label="@string/app_name"
android:launchMode="standard"
android:taskAffinity="com.ryg.task1" />

另外一种情况是通过Intent中设置标志位来为Activity指定启动模式。

      Intent intent = new Intent();
intent.setClass(MainActivity.this, SecondActivity.class);
intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
startActivity(intent);

这两者是有区别的,首先,在优先级上,第一种方式优先级要高于第一种,当两种同时存在的时候,以第二种方式为准,第一种方式无法直接为Activity设为FLAG_ACTIVITY_CLEAR_TOP标识,而第二种方式无法为Activity指定singleInstance模式。

Activity的Flags

FLAG_ACTIVITY_NEW_TASK:这个标记位的作用是为Activity指定“singleTask”启动模式,其效果和在XML中指定该模式相同。

FLAG_ACTIVITY_SINGLE_TOP:这个标记位的作用是为Activity指定“singleTop”启动模式,其效果和在XML中指定该模式相同。

FLAG_ACTIVITY_CLEAR_TOP:具有次标记位的Activity,当它启动时,在同一个任务栈中所有位于它上面的Activity都要出栈,这个标记位一般会和singleTask启动模式一起出现。如果被启动的Activity的实例已经存在,那么系统就会调用它的onNewIntent

阅读扩展

源于对掌握的Android开发基础点进行整理,罗列下已经总结的文章,从中可以看到技术积累的过程。

1,Android系统简介

2,ProGuard代码混淆

3,讲讲Handler+Looper+MessageQueue关系

4,Android图片加载库理解

5,谈谈Android运行时权限理解

6,EventBus初理解

7,Android 常见工具类

8,对于Fragment的一些理解

9,Android 四大组件之 " Activity "

10,Android 四大组件之" Service "

11,Android 四大组件之“ BroadcastReceiver "

12,Android 四大组件之" ContentProvider "

13,讲讲 Android 事件拦截机制

14,Android 动画的理解

15,Android 生命周期和启动模式

16,Android IPC 机制

17,View 的事件体系

18,View 的工作原理

19,理解 Window 和 WindowManager

20,Activity 启动过程分析

21,Service 启动过程分析

22,Android 性能优化

23,Android 消息机制

24,Android Bitmap相关

25,Android 线程和线程池

26,Android 中的 Drawable 和动画

27,RecylerView 中的装饰者模式

28,Android 触摸事件机制

29,Android 事件机制应用

30,Cordova 框架的一些理解

31,有关 Android 插件化思考

32,开发人员必备技能——单元测试

上一篇:Android开发艺术探索(一)——Activity的生命周期和启动模式


下一篇:python-学习笔记之-Day5 双层装饰器 字符串格式化 python模块 递归 生成器 迭代器 序列化